Background: It is clear that patients with a severe traumatic brain injury (TBI) develop secondary, potentially lethal neurological deterioration. However, it is difficult to predict which patients with mild-to-moderate TBI (MM-TBI), even after intensive care unit (ICU) admission, will experience poor outcome at 6 months. Standard computed tomography (CT) imaging scans provide information that can be used to estimate specific gravity (eSG).
View Article and Find Full Text PDFIn an effort to combine the benefits of fibrinolytics, such as staphylokinase, with those of thrombin inhibitors for the prevention of vessel reocclusion after vascular injury, we have produced several chimeric proteins with plasminogen-activating and thrombin-inhibiting properties. Fusion proteins were constructed consisting of the modules staphylokinase (Sak), the factor Xa cleavage site, and various dipetalin (Dip) domains (H(6)-Sak-Dip-I+II, H(6)-Sak-Dip-I, and H(6)-Sak-Dip-II). Sak stimulates fibrinolysis via activation of plasminogen, whereas dipetalin is a two-domain, Kazal-type inhibitor of thrombin.
View Article and Find Full Text PDFThe interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates.
View Article and Find Full Text PDF