Myeloid sarcoma (MS) is currently considered equivalent to de novo acute myeloid leukemia (AML); however, the relationship between these entities is poorly understood. This retrospective multi-institutional cohort study compared 43 MS with mutation to 106 AML with mutation. Compared to AML, MS had more frequent cytogenetic abnormalities including complex karyotype ( = .
View Article and Find Full Text PDFOrganoid models allow for the study of key pathophysiological processes such as cancer biology in vitro. They offer insights into all aspects covering tumor development, progression and response to the treatment of tissue obtained from individual patients. Tumor organoids are therefore not only a better tumor model than classical monolayer cell cultures but can be used as personalized avatars for translational studies.
View Article and Find Full Text PDFMutations in the splicing factor SF3B1 are frequently occurring in various cancers and drive tumor progression through the activation of cryptic splice sites in multiple genes. Recent studies also demonstrate a positive correlation between the expression levels of wild-type SF3B1 and tumor malignancy. Here, we demonstrate that SF3B1 is a hypoxia-inducible factor (HIF)-1 target gene that positively regulates HIF1 pathway activity.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. It is a clinically and morphologically heterogeneous entity that has continued to resist complete subtyping. Molecular subtyping efforts emerged in earnest with the advent of gene expression profiling (GEP).
View Article and Find Full Text PDFPancreatic cancer (PDAC) is a highly aggressive malignancy for which the identification of novel therapies is urgently needed. Here, we establish a human PDAC organoid biobank from 31 genetically distinct lines, covering a representative range of tumor subtypes, and demonstrate that these reflect the molecular and phenotypic heterogeneity of primary PDAC tissue. We use CRISPR-Cas9 genome editing and drug screening to characterize drug-gene interactions with and .
View Article and Find Full Text PDFBackground & Aims: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood.
View Article and Find Full Text PDFIntra-tumor hypoxia is a common feature in many solid cancers. Although transcriptional targets of hypoxia-inducible factors (HIFs) have been well characterized, alternative splicing or processing of pre-mRNA transcripts which occurs during hypoxia and subsequent HIF stabilization is much less understood. Here, we identify many HIF-dependent alternative splicing events after whole transcriptome sequencing in pancreatic cancer cells exposed to hypoxia with and without downregulation of the aryl hydrocarbon receptor nuclear translocator (ARNT), a protein required for HIFs to form a transcriptionally active dimer.
View Article and Find Full Text PDFIn recent years, the gravitational curvatures, the third-order derivatives of the gravitational potential (GP), of a tesseroid have been introduced in the context of gravity field modeling. Analogous to the gravity field, magnetic field modeling can be expanded by magnetic curvatures (MC), the third-order derivatives of the magnetic potential (MP), which are the change rates of the magnetic gradient tensor (MGT). Exploiting Poisson's relations between th-order derivatives of the GP and th-order derivatives of the MP, this paper derives expressions for the MC of a uniformly magnetized tesseroid using the fourth-order derivatives of the GP of a uniform tesseroid expressed in terms of the Cartesian kernel functions.
View Article and Find Full Text PDFColorectal cancer (CRC) is a leading cause of cancer-related death. Conventional chemotherapeutic regimens have limited success rates, and a major challenge for the development of novel therapies is the lack of adequate in vitro models. Nonmalignant mesenchymal and immune cells of the tumor microenvironment (TME) are known to critically affect CRC progression and drug responsiveness.
View Article and Find Full Text PDFInfiltration of human cancers by T cells is generally interpreted as a sign of immune recognition, and there is a growing effort to reactivate dysfunctional T cells at such tumor sites. However, these efforts only have value if the intratumoral T cell receptor (TCR) repertoire of such cells is intrinsically tumor reactive, and this has not been established in an unbiased manner for most human cancers. To address this issue, we analyzed the intrinsic tumor reactivity of the intratumoral TCR repertoire of CD8 T cells in ovarian and colorectal cancer-two tumor types for which T cell infiltrates form a positive prognostic marker.
View Article and Find Full Text PDFEpithelial organoids are simplified models of organs grown in vitro from embryonic and adult stem cells. They are widely used to study organ development and disease, and enable drug screening in patient-derived primary tissues. Current protocols, however, rely on animal- and tumor-derived basement membrane extract (BME) as a 3D scaffold, which limits possible applications in regenerative medicine.
View Article and Find Full Text PDFThe complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue.
View Article and Find Full Text PDFColorectal cancer (CRC) infiltration by cells expressing myeloperoxidase (MPO) or CD8 positive T lymphocytes has been shown to be independently associated with favorable prognosis. We explored the relationship occurring between CD8+ and MPO+ cell CRC infiltration, its impact on clinical-pathological features and its prognostic significance in a tissue microarray (TMA) including 1,162 CRC. We observed that CRC showing high MPO+ cell infiltration are characterized by a prognosis as favorable as that of cancers with high CD8+ T cell infiltration.
View Article and Find Full Text PDFAnticancer compound screening on 2D cell cultures poorly predicts "in vivo" performance, while conventional 3D culture systems are usually characterized by limited cell proliferation, failing to produce tissue-like-structures (TLS) suitable for drug testing. We addressed engineering of TLS by culturing cancer cells in porous scaffolds under perfusion flow. Colorectal cancer (CRC) HT-29 cells were cultured in 2D, on collagen sponges in static conditions or in perfused bioreactors, or injected subcutaneously in immunodeficient mice.
View Article and Find Full Text PDFAims: A trend towards local excision of early rectal cancers has prompted us to investigate if immunoprofiling might help in predicting lymph node involvement in this subgroup.
Methods: A tissue microarray of 126 biopsies of early rectal cancer (T1 and T2) was stained for several immunomarkers of the innate and the adaptive immune response. Patients' survival and nodal status were analyzed and correlated with infiltration of the different immune cells.
Interaction between cancer cells and immune system critically affects development, progression and treatment of human malignancies. Experimental animal models and conventional "in vitro" studies have provided a wealth of information on this interaction, currently used to develop immune-mediated therapies. Studies utilizing three-dimensional culture technologies have emphasized that tumor architecture dramatically influences cancer cell-immune system interaction by steering cytokine production and regulating differentiation patterns of myeloid cells, and decreasing the sensitivity of tumor cells to lymphocyte effector functions.
View Article and Find Full Text PDFPurpose: Colorectal cancer infiltration by CD16(+) myeloid cells correlates with improved prognosis. We addressed mechanistic clues and gene and protein expression of cytokines potentially associated with macrophage polarization.
Experimental Design: GM-CSF or M-CSF-stimulated peripheral blood CD14(+) cells from healthy donors were cocultured with colorectal cancer cells.
The prognostic relevance of innate immune cells infiltrating colorectal carcinoma lesions is highly debated. By evaluating the expression of myeloperoxidase (MPO) as a marker of neutrophil granulocytes in a large cohort of colorectal carcinoma specimens, we have observed that robust tumor-infiltration by MPO cells correlates with improved patient survival independently of other histopathological parameters, including disease stage.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) infiltration by adaptive immune system cells correlates with favorable prognosis. The role of the innate immune system is still debated. Here we addressed the prognostic impact of CRC infiltration by neutrophil granulocytes (NG).
View Article and Find Full Text PDFPurpose: Ovarian carcinoma in most instances is diagnosed in an advanced stage which cannot be cured by surgical tumor debulking alone. Standard adjuvant chemotherapy usually follows surgical procedures. Yet, few reliable predictive tissue markers exist for the response of ovarian carcinoma to chemotherapy.
View Article and Find Full Text PDFBackground: Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed.
View Article and Find Full Text PDF