Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine.
View Article and Find Full Text PDFBroad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA.
View Article and Find Full Text PDFA new synthetic access to molecular tweezers with one or two aliphatic phosphate ester groups in the central benzene spacer-unit is presented. Alkynyl ester groups offer the prospect to attach additional functional units by click chemistry and greatly broaden the scope of these tools for chemical biology. We present two alternative strategies: the trichloroacetonitrile method involves activation of only one OH group of each phosphoric acid substituent by way of trichloroacetimidate intermediates and subsequent introduction of an aliphatic ester alcohol moiety.
View Article and Find Full Text PDFEbola (EBOV) and Zika viruses (ZIKV) are responsible for recent global health threats. As no preventive vaccines or antiviral drugs against these two re-emerging pathogens are available, we evaluated whether the molecular tweezer CLR01 may inhibit EBOV and ZIKV infection. This small molecule has previously been shown to inactivate HIV-1 and herpes viruses through a selective interaction with lipid-raft-rich regions in the viral envelope, which results in membrane disruption and loss of infectivity.
View Article and Find Full Text PDFProtein regions that are involved in protein-protein interactions (PPIs) very often display a high degree of intrinsic disorder, which is reduced during the recognition process. A prime example is binding of the rigid 14-3-3 adapter proteins to their numerous partner proteins, whose recognition motifs undergo an extensive disorder-to-order transition. In this context, it is highly desirable to control this entropy-costly process using tailored stabilizing agents.
View Article and Find Full Text PDFHuntington's disease is a neurodegenerative disorder associated with the expansion of the polyglutamine tract in the exon-1 domain of the huntingtin protein (htt). Above a threshold of 37 glutamine residues, htt starts to aggregate in a nucleation-dependent manner. A 17-residue N-terminal fragment of htt (N17) has been suggested to play a crucial role in modulating the aggregation propensity and toxicity of htt.
View Article and Find Full Text PDFSemen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils.
View Article and Find Full Text PDF