Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2015
Theoretical and experimental analyses of piezoelectric stacks submitted to periodical electrical boundary conditions via electrodes are conducted. The presented structures exhibit Bragg band gaps that can be switched on or off by setting electrodes in short or open circuit. The band gap frequency width is determined by the electromechanical coupling coefficient.
View Article and Find Full Text PDFThe cavitation field generated by an ultrasonic horn at low frequency and high power is known to self-organize into a conical bubble structure. The physical mechanism at the origin of this bubble structure is investigated using numerical simulations and acoustic pressure measurements. The thin bubbly layer lying at horn surface is shown to act as a nonlinear thickness resonator that amplifies acoustic pressure and distorts acoustic waveform.
View Article and Find Full Text PDFThe generation of ultrasonic cavitation in a thin liquid layer trapped between a large radiating surface and a hard reflector and bounded laterally by a gas-liquid interface is investigated. The theoretical analysis predicts that a large amplification of the acoustical pressure is obtained with this configuration. Experiments are conducted by driving the layer with horn-type transducers having a large emitting surface.
View Article and Find Full Text PDFThe cavitation field radiated by a 20 kHz sonotrode-type transducer is experimentally and theoretically analyzed. Special interest is paid to the origin of the strong fluid streaming appearing in low frequency sonoreactors. A new experimental procedure is proposed to evaluate the mean acoustic pressure inside the fluid.
View Article and Find Full Text PDFA new phenomenon in ultrasonic cavitation field is reported. Cavitation bubbles are observed to self-arrange in a cone-like macrostructure in the vicinity of transducer radiating surface. The cone-like macrostructure is stable while its branch-like pattern microstructure changes rapidly.
View Article and Find Full Text PDF