Publications by authors named "Christian Graeff"

Background: Motion of lung tumors during radiotherapy leads to decreased accuracy of the delivered dose distribution. This is especially true for proton radiotherapy due to the finite range of the proton beam. Methods for mitigating motion rely on knowing the position of the tumor during treatment.

View Article and Find Full Text PDF

Upright positioning has seen a surge in interest as a means to reduce radiotherapy (RT) cost, improve patient comfort, and, in selected cases, benefit treatment quality. In particle therapy (PT) in particular, eliminating the need for a gantry can present massive cost and facility footprint reduction. This review discusses the opportunities of upright RT in perspective of the open challenges.

View Article and Find Full Text PDF

There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation.

View Article and Find Full Text PDF

We demonstrate a novel focus stacking technique to improve spatial resolution of single-event particle radiography (pRad), and exploit its potential for 3D feature detection.Focus stacking, used typically in optical photography and microscopy, is a technique to combine multiple images with different focal depths into a single super-resolution image. Each pixel in the final image is chosen from the image with the largest gradient at that pixel's position.

View Article and Find Full Text PDF

Purpose: To investigate the accuracy of the treatment planning system (TPS) TRiP4D in reproducing doses computed by the clinically used TPS SyngoRT.

Methods: Proton and carbon ion beam models in TRiP4D were converted from SyngoRT. Cubic plans with different depths in a water-tank phantom (WP) and previously treated and experimentally verified patient plans from SyngoRT were recalculated in TRiP4D.

View Article and Find Full Text PDF

Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) radiotherapy.

View Article and Find Full Text PDF

Sharp dose gradients and high biological effectiveness make ions such as C an ideal tool to treat deep-seated tumors, however, at the same time, sensitive to errors in the range prediction. Tumor safety margins mitigate these uncertainties, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the Bragg peak benefits, a large effort is put into establishing precise range verification methods.

View Article and Find Full Text PDF

Purpose: Treatment of locally advanced lung cancer is limited by toxicity and insufficient local control. Particle therapy could enable more conformal treatment than intensity modulated photon therapy but is challenged by irregular tumor motion, associated range changes, and tumor deformations. We propose a new strategy for robust, online adaptive particle therapy, synergizing 4-dimensional optimization with real-time adaptive beam tracking.

View Article and Find Full Text PDF

Particle therapy is a rapidly growing field in cancer therapy. Worldwide, over 100 centers are in operation, and more are currently in construction phase. The interest in particle therapy is founded in the superior target dose conformity and healthy tissue sparing achievable through the particles' inverse depth dose profile.

View Article and Find Full Text PDF

4D multi-image-based (4D) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT).

View Article and Find Full Text PDF

. The purpose of this study was to perform preliminary pre-clinical tests to compare the dosimetric quality of two approaches to treating moving tumors with ion beams: synchronously delivering the beam with the motion of a moving planning target volume (PTV) using the recently developed multi-phase 4D dose delivery (MP4D) approach, and asynchronously delivering the ion beam to a motion-encompassing internal tumor volume (ITV) combined with rescanning..

View Article and Find Full Text PDF

Purpose: Highly conformal scanned Carbon Ion Radiotherapy (CIRT) might permit dose escalation and improved local control in advanced stage thoracic tumors, but is challenged by target motion. Dose calculation algorithms typically assume a periodically repeating, regular motion. To assess the effect of realistic, irregular motion, new algorithms of validated accuracy are needed.

View Article and Find Full Text PDF

Purpose: To predict and mitigate for the degradation in physical and biologically effective dose distributions of particle beams caused by microscopic heterogeneities in lung tissue.

Materials And Methods: The TRiP98 treatment planning system was adapted to account for the beam-modulating effect of heterogeneous lung tissue in physical and biological inverse treatment planning. The implementation employs an analytical model that derives the degradation from the established "modulation power" parameter and the total water-equivalent thickness of lung parenchyma traversed by the beam.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to validate the dosimetric performance of scanned ion beam deliveries with motion-synchronization to heterogenous targets.

Methods: A 4D library of treatment plans, comprised of up to 10 3D sub-plans, was created with robust and conventional 4D optimization methods. Each sub-plan corresponded to one phase of periodic target motion.

View Article and Find Full Text PDF

Several techniques are under development for image-guidance in particle therapy. Positron (β) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β-emitters generated projectile fragmentation.

View Article and Find Full Text PDF

Background: Quality management and safety are integral to modern radiotherapy. New radiotherapy technologies require new consensus guidelines on quality and safety. Established analysis strategies, such as the failure modes and effects analysis (FMEA) and incident learning systems have been developed as tools to assess the safety of several types of radiation therapies.

View Article and Find Full Text PDF

Biomedical applications at high-energy particle accelerators have always been an important section of the applied nuclear physics research. Several new facilities are now under constructions or undergoing major upgrades. While the main goal of these facilities is often basic research in nuclear physics, they acknowledge the importance of including biomedical research programs and of interacting with other medical accelerator facilities providing patient treatments.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a modular dose-delivery system (DDS) for scanned-ion radiotherapy that mitigates against organ motion artifacts by synchronizing the motion of the beam with that of the moving anatomy.

Methods: We integrated a new motion synchronization system and an existing DDS into two centers. The modular approach to integration utilized an adaptive layer of software and hardware interfaces.

View Article and Find Full Text PDF

Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases.

View Article and Find Full Text PDF

Cardiac arrhythmias are a major health burden, associated with reduced quality of life and substantial morbidity and mortality. Current therapy includes moderately effective medication and catheter-based ablation of arrhythmogenic substrates in the heart. Catheter interventions frequently have to be repeated due to recurrent arrhythmia, can have rare but severe side-effects and are less suited especially for potentially lethal left ventricular tachycardia.

View Article and Find Full Text PDF

Introduction: Whereas hadron therapy of static targets is clinically established, treatment of moving organs remains a challenge. One strategy is to minimize motion of surrounding tissue mechanically and to mitigate residual motion with an appropriate irradiation technique. In this technical note, we present and characterize such an immobilization technique for a novel noncancerous application: the irradiation of small targets in hearts with scanned carbon ion beams in a porcine model for elimination of arrhythmias.

View Article and Find Full Text PDF

Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted.

View Article and Find Full Text PDF

Noninvasive ablation of cardiac arrhythmia by scanned particle radiotherapy is highly promising, but especially challenging due to cardiac and respiratory motion. Irradiations for catheter-free ablation in intact pigs were carried out at the GSI Helmholtz Center in Darmstadt using scanned carbon ions. Here, we present real-time electrocardiogram (ECG) data to estimate time-resolved (4D) delivered dose.

View Article and Find Full Text PDF

Background And Purpose: Moving targets could be conformally treated with actively scanned carbon ion beams using 4D-optimization. As this heavily exploits 4D-CTs, an important question is whether the conformity also upholds in the context of interfractional changes, i.e.

View Article and Find Full Text PDF