Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System, but do vary on galactic scales with a C/C isotopologue ratio of around 68 in the current local interstellar medium. In molecular clouds and protoplanetary disks, CO/CO ratios can be altered by ice and gas partitioning, low-temperature isotopic ion-exchange reactions and isotope-selective photodissociation.
View Article and Find Full Text PDFIn the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk.
View Article and Find Full Text PDF