Publications by authors named "Christian Giardina"

Article Synopsis
  • Herbivorous insects significantly impact nutrient cycling in forests, with tropical forests experiencing more nutrient release from these insects compared to temperate and boreal forests.
  • The study utilized a global network of 74 plots in mature forests to analyze various leaf compositions and nutrient fluxes influenced by insect herbivory.
  • Results indicate that increasing temperatures can enhance these interactions, thus influencing global biogeochemical cycles and altering ecosystem dynamics in broadleaved forests.
View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

Plant pathogens are increasingly compromising forest health, with impacts to the ecological, economic, and cultural goods and services these global forests provide. One response to these threats is the identification of disease resistance in host trees, which with conventional methods can take years or even decades to achieve. Remote sensing methods have accelerated host resistance identification in agricultural crops and for a select few forest tree species, but applications are rare.

View Article and Find Full Text PDF

Insect herbivores play important roles in shaping many ecosystem processes, but how climate change will alter the effects of insect herbivory are poorly understood. To address this knowledge gap, we quantified for the first time how insect frass and cadavers affected leaf litter decomposition rates and nutrient release along a highly constrained 4.3°C mean annual temperature (MAT) gradient in a Hawaiian montane tropical wet forest.

View Article and Find Full Text PDF

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter.

View Article and Find Full Text PDF

Physical dormancy in seeds can challenge restoration efforts where scarification conditions for optimal germination and seedling vigor are unknown. For species that occur along wide environmental gradients, optimal scarification conditions may also differ by seed source. We examined intraspecific variation in optimal scarification conditions for germination and seedling performance in koa (), which occurs across a wide range of environmental conditions.

View Article and Find Full Text PDF

Invasive species alter hydrologic processes at watershed scales, with impacts to biodiversity and the supporting ecosystem services. This effect is aggravated by climate change. Here, we integrated modelled hydrologic data, remote sensing products, climate data, and linear mixed integer optimization (MIP) to identify stewardship actions across space and time that can reduce the impact of invasive species.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations influence tree diversity across different latitudes, using data from over 2.8 million trees.
  • AM trees were found to significantly contribute to reducing total tree diversity and turnover while enhancing nestedness at higher latitudes, contrasting with EcM trees that show less influence on compositional differences.
  • Environmental factors, especially temperature and precipitation, were more closely related to the beta-diversity patterns of AM trees, emphasizing the role of AM associations in maintaining global forest biodiversity.
View Article and Find Full Text PDF

Tropical forests exert a disproportionately large influence on terrestrial carbon (C) balance but projecting the effects of climate change on C cycling in tropical forests remains uncertain. Reducing this uncertainty requires improved quantification of the independent and interactive effects of variable and changing temperature and precipitation regimes on C inputs to, cycling within and loss from tropical forests. Here, we quantified aboveground litterfall and soil-surface CO efflux ("soil respiration"; F ) in nine plots organized across a highly constrained 5.

View Article and Find Full Text PDF

Mean annual temperature (MAT) is an influential climate factor affecting the bioavailability of growth-limiting nutrients nitrogen (N) and phosphorus (P). In tropical montane wet forests, warmer MAT drives higher N bioavailability, while patterns of P availability are inconsistent across MAT. Two important nutrient acquisition strategies, fine root proliferation into bulk soil and root association with arbuscular mycorrhizal fungi, are dependent on C availability to the plant via primary production.

View Article and Find Full Text PDF

Despite growing understanding of how rising temperatures affect carbon cycling, the impact of long-term and whole forest warming on the suite of essential and potentially limiting nutrients remains understudied, particularly for elements other than N and P. Whole ecosystem warming experiments are limited, environmental gradients are often confounded by variation in factors other than temperature, and few studies have been conducted in the tropics. We examined litterfall, live foliar nutrient content, foliar nutrient resorption efficiency (NRE), nutrient return, and foliar nutrient use efficiency (NUE) of total litterfall and live foliage of two dominant trees to test hypotheses about how increasing mean annual temperature (MAT) impacts the availability and ecological stoichiometry of C, N, P, K, Ca, Mg, Mn, Fe, Zn, and Cu in tropical montane wet forests located along a 5.

View Article and Find Full Text PDF

Nonnative, invasive feral pigs (Sus scrofa) modify habitats by disturbing soils and vegetation, which can alter biogeochemical processes. Soil microbial communities drive nutrient cycling and therefore also play important roles in shaping ecosystem structure and function, but the responses of soil microbes to nonnative ungulate removal remains poorly studied. We examined changes in the soil bacterial community over a ~25 year chronosequence of feral pig removal in tropical montane wet forests on the Island of Hawai'i.

View Article and Find Full Text PDF

Background: This data paper provides a description of OpenNahele, the open Hawaiian forest plot database. OpenNahele includes 530 forest plots across the Hawaiian archipelago containing 43,590 individuals of 185 native and alien tree, shrub and tree fern species across six islands. We include estimates of maximum plant size (D95 and D) for 58 woody plant species, a key functional trait associated with dispersal distance and competition for light.

View Article and Find Full Text PDF

Worldwide, native species increasingly contend with the interacting stressors of habitat fragmentation and invasive species, yet their combined effects have rarely been examined. Direct negative effects of invasive omnivores are well documented, but the indirect effects of resource competition or those caused by predator avoidance are unknown. Here we isolated and examined the independent and interactive effects of invasive omnivorous Black rats (Rattus rattus) and forest fragment size on the interactions between avian predators and their arthropod prey.

View Article and Find Full Text PDF

Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests.

View Article and Find Full Text PDF

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.

View Article and Find Full Text PDF

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.

View Article and Find Full Text PDF
Article Synopsis
  • Gross primary production (GPP) is a key carbon flux that influences climate and atmospheric chemistry globally.
  • The MODIS-MOD17 model is used for estimating GPP but may yield uncertain results in varied landscapes, especially tropical regions, when relying on global data.
  • In Hawaii, using local land cover and climate data improved GPP estimates by lowering them approximately 16%, indicating the necessity for tailored data in heterogeneous environments.
View Article and Find Full Text PDF

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance.

View Article and Find Full Text PDF

Background: Spatially explicit forest carbon (C) monitoring aids conservation and climate change mitigation efforts, yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping of aboveground C density (ACD; units = Mg or metric tons C ha) on islands at a spatial resolution of 30 m (0.09 ha) using a combination of cost-effective airborne LiDAR data and full-coverage satellite data.

View Article and Find Full Text PDF

Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts.

View Article and Find Full Text PDF

Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.

View Article and Find Full Text PDF

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change.

View Article and Find Full Text PDF

The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types.

View Article and Find Full Text PDF