On the African continent, Picrodendraceae are represented by four genera. Their intracontinental paleophytogeographic histories and paleoecological aspects are obscured by the lack of pre-Miocene fossils. For this study, late Eocene sediments from Kenya were investigated.
View Article and Find Full Text PDFPaleobiodivers Paleoenviron
May 2024
The association of pollinators with their host plants is a critical element of ecosystem functioning and one that is usually determined indirectly in the fossil record from specific morphological traits of flowers or putative pollinating animals. The exceptionally fine preservation at Messel, Germany, offers an excellent source of data on pollen from fossil flowers as well as preserved adhering to insects as direct evidence of their association with specific floral lineages. Here, we report on pollen recovered from the body and legs of a large carpenter bee (Apidae: Xylocopinae: Xylocopini) from the Eocene of Messel.
View Article and Find Full Text PDFIntroduction: Lymphocyte depletion via anti-CD52 monoclonal antibody (mAb) therapy is an effective treatment strategy for relapsing-remitting multiple sclerosis (MS) but is associated with infusion/injection-associated reactions (IARs) and autoimmune-related adverse events (AEs). Gatralimab is a next-generation humanized anti-CD52 mAb.
Methods: Two first-in-human trials were conducted in participants with progressive MS to assess the pharmacodynamics, pharmacokinetics, and safety of gatralimab administered via subcutaneous (SC) and intravenous (IV) routes, and to determine the effect of different comedication regimes on IARs to SC gatralimab.
The combined morphological features of (Hydrocharitaceae) pollen, observed with light and electron microscopy, make it unique among all angiosperm pollen types and easy to identify. Unfortunately, the plant is (and most likely was) insect-pollinated and produces relatively few pollen grains per flower, contributing to its apparent absence in the paleopalynological record. Here, we present fossil pollen from the Eocene of Germany (Europe) and Kenya (Africa), representing the first reliable pre-Pleistocene pollen records of this genus worldwide and the only fossils of this family discovered so far in Africa.
View Article and Find Full Text PDFThe mechanistic target of rapamycin (mTOR) pathway integrates metabolic cues into cell fate decisions. A particularly fateful event during the adaptive immune response is the engagement of a T cell receptor by its cognate antigen presented by an antigen-presenting cell (APC). Here, the induction of adequate T cell activation and lineage specification is critical to mount protective immunity; at the same time, inadequate activation, which could lead to autoimmunity, must be avoided.
View Article and Find Full Text PDFA 62-year-old man presented with excruciating joint pains, back stiffness and numbness of his hands and feet. Over the past 18 months, he had experienced similar episodes for which the diagnoses of bilateral carpal tunnel syndrome and lateral epicondylitis had been made. Physical examination revealed polyarticular arthritis affecting the shoulders, wrists and right knee.
View Article and Find Full Text PDFExtreme events occur in a variety of natural, technical, and societal systems and often have catastrophic consequences. Their low-probability, high-impact nature has recently triggered research into improving our understanding of generating mechanisms, providing early warnings as well as developing control strategies. For the latter to be effective, knowledge about dynamical resistance of a system prior to an extreme event is of utmost importance.
View Article and Find Full Text PDFAims: In this study, we aimed to clinically and genetically characterize LVNC patients and investigate the prevalence of variants in known and novel LVNC disease genes.
Introduction: Left ventricular non-compaction cardiomyopathy (LVNC) is an increasingly recognized cause of heart failure, arrhythmia, thromboembolism, and sudden cardiac death. We sought here to dissect its genetic causes, phenotypic presentation and outcome.
We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease.
View Article and Find Full Text PDFA previously healthy 66-year-old woman living in the Mid-Atlantic USA presented to the hospital with lethargy, ataxia and slurred speech. 2 weeks prior she had removed a tick from her right groin. She reported malaise, fevers, diarrhoea, cough and a rash.
View Article and Find Full Text PDFNodes in large-scale epileptic networks that are crucial for seizure facilitation and termination can be regarded as potential targets for individualized focal therapies. Graph-theoretical approaches based on centrality concepts can help to identify such important nodes, however, they may be influenced by the way networks are derived from empirical data. Here we investigate evolving functional epileptic brain networks during 82 focal seizures with different anatomical onset locations that we derive from multichannel intracranial electroencephalographic recordings from 51 patients.
View Article and Find Full Text PDFWe investigate the long-term evolution of degree-degree correlations (assortativity) in functional brain networks from epilepsy patients. Functional networks are derived from continuous multi-day, multi-channel electroencephalographic data, which capture a wide range of physiological and pathophysiological activities. In contrast to previous studies which all reported functional brain networks to be assortative on average, even in case of various neurological and neurodegenerative disorders, we observe large fluctuations in time-resolved degree-degree correlations ranging from assortative to dissortative mixing.
View Article and Find Full Text PDFPurpose: Research into epileptic networks has recently allowed deeper insights into the epileptic process. Here we investigated the importance of individual network nodes for seizure dynamics.
Methods: We analysed intracranial electroencephalographic recordings of 86 focal seizures with different anatomical onset locations.
We compare different centrality metrics which aim at an identification of important nodes in complex networks. We investigate weighted functional brain networks derived from multichannel electroencephalograms recorded from 23 healthy subject under resting-state eyes-open or eyes-closed conditions. Although we observe the metrics strength, closeness, and betweenness centrality to be related to each other, they capture different spatial and temporal aspects of important nodes in these networks associated with behavioral changes.
View Article and Find Full Text PDFAims: Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) can both be due to mutations in the genes encoding β-myosin heavy chain (MYH7) or cardiac myosin-binding protein C (MYBPC3). The aim of the present study was to determine the prevalence and spectrum of mutations in both genes in German HCM and DCM patients and to establish novel genotype-to-phenotype correlations.
Methods And Results: Coding exons and intron flanks of the two genes MYH7 and MYBPC3 of 236 patients with HCM and 652 patients with DCM were sequenced by conventional and array-based means.
We investigated a large German family (n = 37) with male members who had contractures, rigid spine syndrome, and hypertrophic cardiomyopathy. Muscle weakness or atrophy was not prominent in affected individuals. Muscle biopsy disclosed a myopathic pattern with cytoplasmic bodies.
View Article and Find Full Text PDFConnective tissue growth factor (CTGF) is a secreted protein that is strongly induced in human and experimental heart failure. CTGF is said to be profibrotic; however, the precise function of CTGF is unclear. We generated transgenic mice and rats with cardiomyocyte-specific CTGF overexpression (CTGF-TG).
View Article and Find Full Text PDFA proper interaction between the endocardial-derived ligand Neuregulin-1 and the myocardial "Human Epidermal growth factor Receptor 2" (HER2) is essential for maintaining heart function. The shed extracellular domain (ECD) of HER2 circulates in blood and serves as a surrogate marker for breast cancer. Altered cardiac loading conditions are accompanied by dysregulation of the myocardial HER2 gene expression.
View Article and Find Full Text PDFBackground: Familial dilated cardiomyopathy is a highly heterogeneous genetic disease. Thus, identification of disease-causing mutations is a challenging and time-consuming task. Genotype-phenotype associations may alleviate identification of the underlying mutation.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
December 2009
Muscle LIM Protein (MLP) is small, just 198 amino acid long protein, which is specifically expressed in slow skeletal muscle and cardiac tissues. This article will focus on the cardiac functions of MLP: the current knowledge about localisation data, binding partners and animal models for the protein will be summarised, and the role of MLP in maintaining a healthy heart be discussed. This review will furthermore attempt to identify gaps in our knowledge-and hence future research potential-with a special focus on MLP's role in cardiac mechano-signalling.
View Article and Find Full Text PDFMitochondrial transcription factors mtTFA, mtTFB1 and mtTFB2 are required for the replication of mitochondrial DNA (mtDNA), regulating the number of mtDNA copies. Mice with a mtTFA deletion showed a reduced number of mtDNA copies, a reduction in respiratory chain activity, and a characteristic dilated cardiomyopathy. DNA variants in these genes could be involved in the risk for cardiac hypertrophy (HCM).
View Article and Find Full Text PDFFamilial Dilated Cardiomyopathy (FDCM) is caused by mutations in genes encoding myocardial force transduction proteins. Desmoglein-2 (DSG2) and Desmocollin-2 (DSC2) provide cellular adhesion and force transduction by cell-to-cell anchorage. To test whether perturbations of DSG2 or DSC2 exhibit a pathogenic impact on DCM pathogenesis, we sequenced both genes in 73 patients with FDCM and assessed prevalence of missense variations in matched control cohorts.
View Article and Find Full Text PDF