: Hybridity authentication is an important component of quality assurance and control (QA/QC) in breeding programs. Here, we introduce HybridQC v1.0, a QA/QC software program specially designed for parental purity and hybridity determination.
View Article and Find Full Text PDFGenetic gain has been proposed as a quantifiable key performance indicator that can be used to monitor breeding programs' effectiveness. The cowpea breeding program at the International Institute of Tropical Agriculture (IITA) has developed and released improved varieties in 70 countries globally. To quantify the genetic changes to grain yield and related traits, we exploited IITA cowpea historical multi-environment trials (METs) advanced yield trial (AYT) data from 2010 to 2022.
View Article and Find Full Text PDFMolecular markers are increasingly being deployed to accelerate genetic gain in crop plants. The objective of this study was to assess the potential of a mid-density genotyping panel for molecular applications in cowpea breeding. A core set of 2,602 targeted diversity array technology (DArTag) single-nucleotide polymorphisms (SNPs) was designed from an existing 51,128 Cowpea iSelect Consortium Array.
View Article and Find Full Text PDFCowpea aphids ( Koch) double as a direct damaging pest and a virus vector to cowpea, threatening the economic yield of the crop. Given the multiple ecotypes, different alleles have been implicated in aphid resistance, necessitating the identification of key genes involved. The present study implemented a genome-wide scan using 365 cowpea mini-core accessions to decipher loci involved in resistance to aphid ecotype from Kano, Nigeria.
View Article and Find Full Text PDFOptimization of a breeding program for increased genetic gain requires quality assurance (QA) and quality control (QC) at key phases of the breeding process. One vital phase in a breeding program that requires QC and QA is the choice of parents and successful hybridizations to combine parental attributes and create variations. The objective of this study was to determine parental diversity and confirm hybridity of cowpea F progenies using KASP (Kompetitive Allele-Specific PCR)-based single nucleotide polymorphism (SNP) markers.
View Article and Find Full Text PDFCrop genetic diversity is a sine qua non for continuous progress in the development of improved varieties, hence the need for germplasm collection, conservation and characterization. Over the years, cowpea has contributed immensely to the nutrition and economic life of the people in Togo. However, the bulk of varieties grown by farmers are landraces due to the absence of any serious genetic improvement activity on cowpea in the country.
View Article and Find Full Text PDFUnlabelled: The objective of this study was to determine genetic potentials in eight sets of cowpea lines for grain yield (GY), hundred seed weight (HSDWT) and days to 50% flowering (DT50FL). A total of 614 F genotypes constituting the sets, grouped by maturity, were evaluated across two locations in Northern Nigeria, in an alpha lattice design, two replications each. Data were recorded on GY, HSDWT and DT50FL.
View Article and Find Full Text PDFThe narrow base of genetic diversity characteristic of cowpea can be attributed to it being self-pollinating, evolving from narrow wild germplasm and exhibiting very limited gene flow between wild and cultivated types. Backcrossing to introduce simply inherited desirable traits and utilization of improved breeding lines and varieties as parents in crossing programs further narrowed the genetic base of cowpea varieties. In most cowpea breeding programs, genes for resistance and market traits were pyramided into lines characterized by high levels of acceptance to farmers and consumers.
View Article and Find Full Text PDFBoth cowpea and yard-long bean belong to ssp. but have diverged through human induced evolution in sub-Saharan Africa and Asia, respectively. To map the quantitative trait loci (QTLs) for yield associated traits and derive new lines that may combine the attributes of both types, we developed a F mapping population derived from a cross between cowpea line TVu2185 and yard-long bean line TVu6642.
View Article and Find Full Text PDFPerennial habit and floral scent are major traits that distinguish domesticated cowpeas from their wild relatives. However, the genetic basis of these two important traits remains largely unknown in cowpea. Plant longevity, a perenniality-related trait, and floral scent, an outcrossing trait, were investigated using a RIL population derived from a cross between a domesticated and a wild cowpea.
View Article and Find Full Text PDFThe flower bud thrips, Trybom (Thysanoptera: Thripidae), is an economically important pest of cowpea in sub-Saharan Africa. Varietal resistance is the most preferred, environmentally friendly, cost-effective and sustainable option for controlling this pest. The objective of this study was to identify sources of resistance to among mini core accessions from the largest world cowpea germplasm collection maintained at the International Institute of Tropical Agriculture (IITA).
View Article and Find Full Text PDFThe International Institute of Tropical Agriculture maintains the world's largest collection of cowpea germplasm of over 15,000 accessions. A sub-set of 298 lines from the loosely composed mini core collection of 370 landraces were genotyped based on genotyping by sequencing (GBS). Ward's minimum variance hierarchical cluster analysis, model-based ancestry analysis and discriminant analysis of principal component (DAPC) were carried out on this sub-set.
View Article and Find Full Text PDFCowpea (Vigna unguiculata L. Walp) is a warm-season legume with a genetically diverse gene-pool composed of wild and cultivated forms. Cowpea domestication involved considerable phenotypic changes from the wild progenitor, including reduction of pod shattering, increased organ size, and changes in flowering time.
View Article and Find Full Text PDFMulti-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.
View Article and Find Full Text PDFCowpea is an important legume crop in Africa, valued highly for its grain and also haulms, which are a tradable commodity in fodder markets. Fodder market surveys in Northern Nigeria showed that groundnut haulms were priced higher than cowpea haulms, probably because of their superior nutritive value. The economic value of haulms has prompted cowpea breeders and livestock nutritionists to explore haulm fodder traits as additional selection and breeding criteria.
View Article and Find Full Text PDFCowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world.
View Article and Find Full Text PDFCowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.
View Article and Find Full Text PDFBackground: Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa.
View Article and Find Full Text PDFCowpea (Vigna unguiculata spp unguiculata) is adapted to the drier agro-ecological zones of West Africa where it is a major source of dietary protein and widely used as a fodder crop. Improving the productivity of cowpea can enhance food availability and security in West Africa. Insect predation--predominately from the legume pod borer (Maruca vitrata), flower thrips (Megalurothrips sjostedti) and a complex of pod-sucking bugs (e.
View Article and Find Full Text PDFConsensus genetic linkage maps provide a genomic framework for quantitative trait loci identification, map-based cloning, assessment of genetic diversity, association mapping, and applied breeding in marker-assisted selection schemes. Among "orphan crops" with limited genomic resources such as cowpea [Vigna unguiculata (L.) Walp.
View Article and Find Full Text PDF