Publications by authors named "Christian F Doeller"

Article Synopsis
  • Humans can categorize visual information into specific groups, with previous fMRI studies highlighting how the brain distinguishes between broad categories (like animate vs. inanimate) and individual objects.
  • Recent research used fMRI coupled with multiple examples of 48 different mammals to examine this further, aiming to clarify the distinctions between fine-grained and coarse-scale representations.
  • The findings suggest fMRI primarily captures visual-specific and general category information, but it can also identify subtle differences between individual objects, challenging earlier assumptions about the level of detail provided by fMRI data.
View Article and Find Full Text PDF

The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown.

View Article and Find Full Text PDF

Humans build mental models of the world and utilize them for various cognitive tasks. The exact form of cognitive maps is not fully understood, especially for novel and complex environments beyond the flat Euclidean environment. To address this gap, we investigated -a critical process underlying cognitive mapping-and spatial-memory capacity on the spherical (non-Euclidean) and planar (Euclidean) environments in young healthy adults ( = 20) using immersive virtual reality.

View Article and Find Full Text PDF

In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subregions using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions.

View Article and Find Full Text PDF

Research from several areas suggests that mental representations adapt to the specific tasks we carry out in our environment. In this study, we propose a mechanism of adaptive representational change, task imprinting. Thereby, we introduce a computational model, which portrays task imprinting as an adaptation to specific task goals via selective storage of helpful representations in long-term memory.

View Article and Find Full Text PDF

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names.

View Article and Find Full Text PDF

Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations.

View Article and Find Full Text PDF

How valuable a choice option is often changes over time, making the prediction of value changes an important challenge for decision making. Prior studies identified a cognitive map in the hippocampal-entorhinal system that encodes relationships between states and enables prediction of future states, but does not inherently convey value during prospective decision making. In this fMRI study, participants predicted changing values of choice options in a sequence, forming a trajectory through an abstract two-dimensional value space.

View Article and Find Full Text PDF

The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al.

View Article and Find Full Text PDF

The human hippocampal-entorhinal system is known to represent both spatial locations and abstract concepts in memory in the form of allocentric cognitive maps. Using fMRI, we show that the human parietal cortex evokes complementary egocentric representations in conceptual spaces during goal-directed mental search, akin to those observable during physical navigation to determine where a goal is located relative to oneself (e.g.

View Article and Find Full Text PDF

Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF.

View Article and Find Full Text PDF

The brain forms cognitive maps of relational knowledge-an organizing principle thought to underlie our ability to generalize and make inferences. However, how can a relevant map be selected in situations where a stimulus is embedded in multiple relational structures? Here, we find that both spatial and predictive cognitive maps influence generalization in a choice task, where spatial location determines reward magnitude. Mirroring behavior, the hippocampus not only builds a map of spatial relationships but also encodes the experienced transition structure.

View Article and Find Full Text PDF

Gaining insight into the relationship between previously separate events allows us to combine these events into coherent episodes. This insight may occur via observation or imagination. Although much of our reasoning occurs in the absence of direct sensory stimuli, how mnemonic integration is accomplished via imagination has remained completely unknown.

View Article and Find Full Text PDF

Memories are not stored in isolation. Insight into the relationship of initially unrelated events may trigger a flexible reconfiguration of the mnemonic representation of these events. Such representational changes allow the integration of events into coherent episodes and help to build up-to-date-models of the world around us.

View Article and Find Full Text PDF

Memory, one of the hallmarks of human cognition, can be modified when humans voluntarily modulate neural population activity using neurofeedback. However, it is currently unknown whether neurofeedback can influence the integration of memories, and whether memory is facilitated or impaired after such neural perturbation. In this study, participants memorized objects while we provided them with abstract neurofeedback based on their brain activity patterns in the ventral visual stream.

View Article and Find Full Text PDF
Article Synopsis
  • The dataset includes behavioural and fMRI observations from Dutch participants engaged in multimodal referential communication, capturing their interactions while describing and locating novel geometrical objects called Fribbles.
  • It features high-quality audio, video, and motion-tracking data from task-based interactions, along with written descriptions and conceptual dimension placements for each object.
  • Additionally, it contains fMRI data collected before and after the interactions, providing insights into the neural correlates of communicative behaviours and the shared mental representations among communicators.
View Article and Find Full Text PDF

The brain encodes the statistical regularities of the environment in a task-specific yet flexible and generalizable format. Here, we seek to understand this process by bridging two parallel lines of research, one centered on sensorimotor timing, and the other on cognitive mapping in the hippocampal system. By combining functional magnetic resonance imaging (fMRI) with a fast-paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled behavioral feedback received in each trial as well as performance improvements across trials along with reward-processing regions.

View Article and Find Full Text PDF
Article Synopsis
  • The brain needs a cognitive map for effective navigation, and this review explores how both blind and sighted individuals form these maps using non-visual senses like hearing and touch.
  • Research shows that while both groups can create cognitive maps through auditory and haptic cues, the accuracy can vary, with some blind individuals facing challenges in forming a broader survey representation of their environment.
  • The review also speculates on techniques to enhance cognitive map formation and discusses how with enough training, people with blindness can improve their spatial navigation abilities.
View Article and Find Full Text PDF

The human brain can form cognitive maps of a spatial environment, which can support wayfinding. In this study, we investigated cognitive map formation of an environment presented in the tactile modality, in visually impaired and sighted persons. In addition, we assessed the acquisition of route and survey knowledge.

View Article and Find Full Text PDF

The hippocampal-entorhinal region supports memory for episodic details, such as temporal relations of sequential events, and mnemonic constructions combining experiences for inferential reasoning. However, it is unclear whether hippocampal event memories reflect temporal relations derived from mnemonic constructions, event order, or elapsing time, and whether these sequence representations generalize temporal relations across similar sequences. Here, participants mnemonically constructed times of events from multiple sequences using infrequent cues and their experience of passing time.

View Article and Find Full Text PDF

Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map.

View Article and Find Full Text PDF

While optically pumped magnetometers (OPMs) can be attached to the head of a person and allow for highly sensitive recordings of the human magnetoencephalogram (MEG), they are mostly limited to an operational range of approximately 5 nT. Consequently, even inside a magnetically shielded room (MSR), movements in the remnant magnetic field disable the OPMs. Active suppression of the remnant field utilizing compensation coils is therefore essential.

View Article and Find Full Text PDF

The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy.

View Article and Find Full Text PDF

Viewing behavior provides a window into many central aspects of human cognition and health, and it is an important variable of interest or confound in many functional magnetic resonance imaging (fMRI) studies. To make eye tracking freely and widely available for MRI research, we developed DeepMReye, a convolutional neural network (CNN) that decodes gaze position from the magnetic resonance signal of the eyeballs. It performs cameraless eye tracking at subimaging temporal resolution in held-out participants with little training data and across a broad range of scanning protocols.

View Article and Find Full Text PDF