Publications by authors named "Christian E Rocheleau"

Signaling by the LET-60 Ras GTPase/ MPK-1 Extracellular Regulated Kinase pathway specifies the vulva cell fate in . The miRNA family negatively regulates LET-60 Ras but other miRNAs can also modulate vulva induction. To determine the impact of globally reducing miRNA function on LET-60 Ras-mediated vulva induction we analyzed the effect of loss of the ALG-1 miRNA regulator on vulva development Contrary to our expectations, we find that ALG-1 promotes vulva induction independently of LET-60 Ras.

View Article and Find Full Text PDF

The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7.

View Article and Find Full Text PDF

FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans.

View Article and Find Full Text PDF

During larval development, an inductive signal mediated by the LET-23 EGFR (epidermal growth factor receptor), specifies three of six vulva precursor cells (VPCs) to adopt vulval cell fates. An evolutionarily conserved complex consisting of PDZ domain-containing scaffold proteins LIN-2 (CASK), LIN-7 (Lin7 or Veli), and LIN-10 (APBA1 or Mint1) (LIN-2/7/10) mediates basolateral LET-23 EGFR localization in the VPCs to permit signal transmission and development of the vulva. We recently found that the LIN-2/7/10 complex likely forms at Golgi ministacks; however, the mechanism through which the complex targets the receptor to the basolateral membrane remains unknown.

View Article and Find Full Text PDF

The evolutionarily conserved LIN-2 (CASK)/LIN-7 (Lin7A-C)/LIN-10 (APBA1) complex plays an important role in regulating spatial organization of membrane proteins and signaling components. In , the complex is essential for the development of the vulva by promoting the localization of the sole Epidermal growth factor receptor (EGFR) ortholog LET-23 to the basolateral membrane of the vulva precursor cells where it can specify the vulval cell fate. To understand how the LIN-2/7/10 complex regulates receptor localization, we determined its expression and localization during vulva development.

View Article and Find Full Text PDF

Rab5 and Rab7 GTPases are key regulators of endosome maturation and lysosome fusion. They activate the class III phosphoinositide 3-kinase (PI3K) Vps34 to generate pools of phosphatidylinositol-3 phosphate [PI(3)P] on endosomes. Together PI(3)P and the GTP-bound Rabs coordinate the recruitment of endosomal regulators to drive early to late endosome maturation and ultimately lysosome fusion.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway.

View Article and Find Full Text PDF

The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete.

View Article and Find Full Text PDF

Epidermal Growth Factor Receptor (EGFR) signaling is essential for animal development and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling.

View Article and Find Full Text PDF

LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal.

View Article and Find Full Text PDF

Systemic RNAi, the intercellular spreading of RNAi silencing, requires SID-1 and SID-3 to import silencing signals in Caenorhabditis elegans. How are these signals exported? SID-5, an endosome-associated protein, is a candidate for the job.

View Article and Find Full Text PDF

Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling.

View Article and Find Full Text PDF

The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7.

View Article and Find Full Text PDF

C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood.

View Article and Find Full Text PDF

During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known.

View Article and Find Full Text PDF

A canonical Ras-ERK signaling pathway specifies the fate of the excretory duct cell during Caenorhabditis elegans embryogenesis. The paralogs ksr-1 and ksr-2 encode scaffolding proteins that facilitate signaling through this pathway and that act redundantly to promote the excretory duct fate. In a genomewide RNAi screen for genes that, like ksr-2, are required in combination with ksr-1 for the excretory duct cell fate, we identified 16 "ekl" (enhancer of ksr-1 lethality) genes that are largely maternally required and that have molecular identities suggesting roles in transcriptional or post-transcriptional gene regulation.

View Article and Find Full Text PDF

Connector enhancer of Ksr (CNK) is a conserved multidomain protein essential for Ras signaling in Drosophila melanogaster and thought to be involved in Raf kinase activation. However, the precise role of CNK in Ras signaling is not known, and mammalian CNKs are proposed to have distinct functions. Caenorhabditis elegans has a single CNK homologue, cnk-1.

View Article and Find Full Text PDF

In early C. elegans embryos, signaling between a posterior blastomere, P2, and a ventral blastomere, EMS, specifies endoderm and orients the division axis of the EMS cell. Although Wnt signaling contributes to this polarizing interaction, no mutants identified to date abolish P2/EMS signaling.

View Article and Find Full Text PDF

In Caenorhabditis elegans, the Ras/Raf/MEK/ERK signal transduction pathway controls multiple processes including excretory system development, P12 fate specification, and vulval cell fate specification. To identify positive regulators of Ras signaling, we conducted a genetic screen for mutations that enhance the excretory system and egg-laying defects of hypomorphic lin-45 raf mutants. This screen identified unusual alleles of several known Ras pathway genes, including a mutation removing the second SH3 domain of the sem-5/Grb2 adaptor, a temperature-sensitive mutation in the helical hairpin of let-341/Sos, a gain-of-function mutation affecting a potential phosphorylation site of the lin-1 Ets domain transcription factor, a dominant-negative allele of ksr-1, and hypomorphic alleles of sur-6/PP2A-B, sur-2/Mediator, and lin-25.

View Article and Find Full Text PDF

Kinase Suppressor of Ras (KSR) is a conserved protein that positively regulates Ras signaling and may function as a scaffold for Raf, MEK, and ERK. However, the precise role of KSR is not well understood, and some observations have suggested that KSR might act in a parallel pathway. In C.

View Article and Find Full Text PDF