Due to concerns on resources depletion, climate change, and overall pollution, the quest toward more sustainable processes is becoming crucial. Atomic layer deposition (ALD) is a versatile technology, allowing for the precise coating of challenging substrates with a nanometer control over thickness. Due to its unique ability to nanoengineer interfaces and surfaces, ALD is widely used in many applications.
View Article and Find Full Text PDFSilicon oxide atomic layer deposition synthesis development over the last few years has open the route to its use as a dielectric within diamond electronics. Its great band-gap makes it a promising material for the fabrication of diamond-metal-oxide field effects transistor gates. Having a sufficiently high barrier both for holes and electrons is mandatory to work in accumulation and inversion regimes without leakage currents, and no other oxide can fulfil this requisite due to the wide diamond band-gap.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
We report the effect of YO passivation by atomic layer deposition (ALD) using various oxidants, such as HO, O plasma, and O, on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V) was observed in the case of the TFT subjected to the HO-ALD YO process; this shift was caused by a donor effect of negatively charged chemisorbed HO molecules. In addition, degradation of the IGZO TFT device performance after the O plasma-ALD YO process (field-effect mobility (μ) = 8.
View Article and Find Full Text PDFThe effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1-xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1-xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1-xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number.
View Article and Find Full Text PDFTwo heteroleptic titanium precursors were investigated for the atomic layer deposition (ALD) of titanium dioxide using ozone as the oxygen source. The precursors, titanium (N,N'-diisopropylacetamidinate)tris(isopropoxide) (Ti(O(i)Pr)3(N(i)Pr-Me-amd)) and titanium bis(dimethylamide)bis(isopropoxide) (Ti(NMe2)2(O(i)Pr)2), exhibit self-limiting growth behavior up to a maximum temperature of 325 °C. Ti(NMe2)2(O(i)Pr)2 displays an excellent growth rate of 0.
View Article and Find Full Text PDF