Publications by authors named "Christian Devereux"

We assess the capability of machine-learned potentials to compute rate coefficients by training a neural network (NN) model and applying it to describe the chemical landscape on the CH potential energy surface, which is relevant to molecular weight growth in combustion and interstellar media. We coupled the resulting NN with an automated kinetics workflow code, KinBot, to perform all necessary calculations to compute the rate coefficients. The NN is benchmarked exhaustively by evaluating its performance at the various stages of the kinetics calculations: from the electronic energy through the computation of zero point energy, barrier heights, entropic contributions, the portion of the PES explored, and finally the overall rate coefficients as formulated by transition state theory.

View Article and Find Full Text PDF

Machine learning (ML) methods have become powerful, predictive tools in a wide range of applications, such as facial recognition and autonomous vehicles. In the sciences, computational chemists and physicists have been using ML for the prediction of physical phenomena, such as atomistic potential energy surfaces and reaction pathways. Transferable ML potentials, such as ANI-1x, have been developed with the goal of accurately simulating organic molecules containing the chemical elements H, C, N, and O.

View Article and Find Full Text PDF

Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist's toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly to large systems, while classical force fields are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both approaches.

View Article and Find Full Text PDF