Self-supervised representation learning can boost the performance of a pre-trained network on downstream tasks for which labeled data is limited. A popular method based on this paradigm, known as contrastive learning, works by constructing sets of positive and negative pairs from the data, and then pulling closer the representations of positive pairs while pushing apart those of negative pairs. Although contrastive learning has been shown to improve performance in various classification tasks, its application to image segmentation has been more limited.
View Article and Find Full Text PDFRecently, deep reinforcement learning (RL) has been proposed to learn the tractography procedure and train agents to reconstruct the structure of the white matter without manually curated reference streamlines. While the performances reported were competitive, the proposed framework is complex, and little is still known about the role and impact of its multiple parts. In this work, we thoroughly explore the different components of the proposed framework, such as the choice of the RL algorithm, seeding strategy, the input signal and reward function, and shed light on their impact.
View Article and Find Full Text PDFDespite the remarkable progress in semi-supervised medical image segmentation methods based on deep learning, their application to real-life clinical scenarios still faces considerable challenges. For example, insufficient labeled data often makes it difficult for networks to capture the complexity and variability of the anatomical regions to be segmented. To address these problems, we design a new semi-supervised segmentation framework that aspires to produce anatomically plausible predictions.
View Article and Find Full Text PDFReconstructing and segmenting cortical surfaces from MRI is essential to a wide range of brain analyses. However, most approaches follow a multi-step slow process, such as a sequential spherical inflation and registration, which requires considerable computation times. To overcome the limitations arising from these multi-steps, we propose SegRecon, an integrated end-to-end deep learning method to jointly reconstruct and segment cortical surfaces directly from an MRI volume in one single step.
View Article and Find Full Text PDFMed Image Anal
December 2023
The performance of learning-based algorithms improves with the amount of labelled data used for training. Yet, manually annotating data is particularly difficult for medical image segmentation tasks because of the limited expert availability and intensive manual effort required. To reduce manual labelling, active learning (AL) targets the most informative samples from the unlabelled set to annotate and add to the labelled training set.
View Article and Find Full Text PDFNeonatal MRIs are used increasingly in preterm infants. However, it is not always feasible to analyze this data. Having a tool that assesses brain maturation during this period of extraordinary changes would be immensely helpful.
View Article and Find Full Text PDFThe use of multiparametric magnetic resonance imaging (mpMRI) has become a common technique used in guiding biopsy and developing treatment plans for prostate lesions. While this technique is effective, non-invasive methods such as radiomics have gained popularity for extracting imaging features to develop predictive models for clinical tasks. The aim is to minimize invasive processes for improved management of prostate cancer (PCa).
View Article and Find Full Text PDFThe physical and clinical constraints surrounding diffusion-weighted imaging (DWI) often limit the spatial resolution of the produced images to voxels up to eight times larger than those of T1w images. The detailed information contained in accessible high-resolution T1w images could help in the synthesis of diffusion images with a greater level of detail. However, the non-Euclidean nature of diffusion imaging hinders current deep generative models from synthesizing physically plausible images.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2023
We present an unsupervised domain adaptation method for image segmentation which aligns high-order statistics, computed for the source and target domains, encoding domain-invariant spatial relationships between segmentation classes. Our method first estimates the joint distribution of predictions for pairs of pixels whose relative position corresponds to a given spatial displacement. Domain adaptation is then achieved by aligning the joint distributions of source and target images, computed for a set of displacements.
View Article and Find Full Text PDFDeep learning models for semi-supervised medical image segmentation have achieved unprecedented performance for a wide range of tasks. Despite their high accuracy, these models may however yield predictions that are considered anatomically impossible by clinicians. Moreover, incorporating complex anatomical constraints into standard deep learning frameworks remains challenging due to their non-differentiable nature.
View Article and Find Full Text PDFDespite achieving promising results in a breadth of medical image segmentation tasks, deep neural networks (DNNs) require large training datasets with pixel-wise annotations. Obtaining these curated datasets is a cumbersome process which limits the applicability of DNNs in scenarios where annotated images are scarce. Mixed supervision is an appealing alternative for mitigating this obstacle.
View Article and Find Full Text PDFThe automatic segmentation of lumbar anatomy is a fundamental problem for the diagnosis and treatment of lumbar disease. The recent development of deep learning techniques has led to remarkable progress in this task, including the possible segmentation of nerve roots, intervertebral discs, and dural sac in a single step. Despite these advances, lumbar anatomy segmentation remains a challenging problem due to the weak contrast and noise of input images, as well as the variability of intensities and size in lumbar structures across different subjects.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2023
Deep learning methods have shown outstanding potential in dermatology for skin lesion detection and identification. However, they usually require annotations beforehand and can only classify lesion classes seen in the training set. Moreover, large-scale, open-sourced medical datasets normally have far fewer annotated classes than in real life, further aggravating the problem.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2021
Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e.
View Article and Find Full Text PDFWe propose a novel pairwise distance measure between image keypoint sets, for the purpose of large-scale medical image indexing. Our measure generalizes the Jaccard index to account for soft set equivalence (SSE) between keypoint elements, via an adaptive kernel framework modeling uncertainty in keypoint appearance and geometry. A new kernel is proposed to quantify the variability of keypoint geometry in location and scale.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2022
This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (COVID-19). We use the proposed GMM-CNN features as input to a robust classifier based on random forests (RFs) to differentiate between COVID-19 and other pneumonia cases.
View Article and Find Full Text PDFImage normalization is a building block in medical image analysis. Conventional approaches are customarily employed on a per-dataset basis. This strategy, however, prevents the current normalization algorithms from fully exploiting the complex joint information available across multiple datasets.
View Article and Find Full Text PDFDeep co-training has recently been proposed as an effective approach for image segmentation when annotated data is scarce. In this paper, we improve existing approaches for semi-supervised segmentation with a self-paced and self-consistent co-training method. To help distillate information from unlabeled images, we first design a self-paced learning strategy for co-training that lets jointly-trained neural networks focus on easier-to-segment regions first, and then gradually consider harder ones.
View Article and Find Full Text PDFFront Aging Neurosci
May 2021
Diagnosis of Parkinson's disease (PD) is commonly based on medical observations and assessment of clinical signs, including the characterization of a variety of motor symptoms. However, traditional diagnostic approaches may suffer from subjectivity as they rely on the evaluation of movements that are sometimes subtle to human eyes and therefore difficult to classify, leading to possible misclassification. In the meantime, early non-motor symptoms of PD may be mild and can be caused by many other conditions.
View Article and Find Full Text PDFDiffusion MRI tractography is currently the only non-invasive tool able to assess the white-matter structural connectivity of a brain. Since its inception, it has been widely documented that tractography is prone to producing erroneous tracks while missing true positive connections. Recently, supervised learning algorithms have been proposed to learn the tracking procedure implicitly from data, without relying on anatomical priors.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2021
Coronavirus disease 2019 (COVID-19) is a new infection that has spread worldwide and with no automatic model to reliably detect its presence from images. We aim to investigate the potential of deep transfer learning to predict COVID-19 infection using chest computed tomography (CT) and x-ray images. Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions were labeled in 100 axial lung CT images from 60 COVID-19-infected subjects.
View Article and Find Full Text PDFThis paper presents a client/server privacy-preserving network in the context of multicentric medical image analysis. Our approach is based on adversarial learning which encodes images to obfuscate the patient identity while preserving enough information for a target task. Our novel architecture is composed of three components: 1) an encoder network which removes identity-specific features from input medical images, 2) a discriminator network that attempts to identify the subject from the encoded images, 3) a medical image analysis network which analyzes the content of the encoded images (segmentation in our case).
View Article and Find Full Text PDFWidely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based on integrals over the segmentation regions.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2022
Brain surface analysis is essential to neuroscience, however, the complex geometry of the brain cortex hinders computational methods for this task. The difficulty arises from a discrepancy between 3D imaging data, which is represented in Euclidean space, and the non-Euclidean geometry of the highly-convoluted brain surface. Recent advances in machine learning have enabled the use of neural networks for non-Euclidean spaces.
View Article and Find Full Text PDFRadiomics has shown remarkable potential for predicting the survival outcome for various types of cancers such as pancreatic ductal adenocarcinoma (PDAC). However, to date, there has been limited research using convolutional neural networks (CNN) with radiomic methods for this task, due to their requirement for large training sets. To overcome this issue, we propose a new type of radiomic descriptor modeling the distribution of learned features with a Gaussian mixture model (GMM).
View Article and Find Full Text PDF