Publications by authors named "Christian Davrinche"

Context: Skin microbiota takes part in the control of cutaneous inflammation. In skin diseases such as atopic dermatitis (AD) cutaneous dysbiosis and the emergence of Staphylococcus aureus contribute to the pathophysiology of the disease. New therapeutic approaches consist in topical application of natural products able to counteract S.

View Article and Find Full Text PDF

Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain.

View Article and Find Full Text PDF

Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections.

View Article and Find Full Text PDF

Interactions between the immune system and skin bacteria are of major importance in the pathophysiology of atopic dermatitis (AD), yet our understanding of them is limited. From a cohort of very young AD children (1 to 3 years old), sensitized to Dermatophagoides pteronyssinus allergens (Der p), we conducted culturomic analysis of skin microbiota, cutaneous transcript profiling and quantification of anti-Der p CD4+ T cells. This showed that the presence of S.

View Article and Find Full Text PDF

Introduction: Congenital infection by human cytomegalovirus (HCMV) is a leading cause of congenital abnormalities of the central nervous system. Placenta infection by HCMV allows for viral spread to fetus and may result in intrauterine growth restriction, preeclampsia-like symptoms, or miscarriages. We previously reported that HCMV activates peroxisome proliferator-activated receptor gamma (PPARγ) for its own replication in cytotrophoblasts.

View Article and Find Full Text PDF

Unlabelled: Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily manifesting as neurological disorders. HCMV infection alters expression of cellular microRNAs (miRs) and induces cell cycle arrest, which in turn modifies the cellular environment to favor virus replication. Previous observations found that HCMV infection reduces miR-21 expression in neural progenitor/stem cells (NPCs).

View Article and Find Full Text PDF

Background: Human cytomegalovirus (HCMV) encodes microRNAs (miRNAs) that function as post-transcriptional regulators of gene expression during lytic infection in permissive cells. Some miRNAs have been shown to suppress virus replication, which could help HCMV to establish or maintain latent infection. However, HCMV miRNA expression has not been comprehensively examined and compared using cell culture systems representing permissive (lytic) and semi-permissive vs.

View Article and Find Full Text PDF

Unlabelled: After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1).

View Article and Find Full Text PDF

A primary HCMV infection or virus reactivation may cause severe disease in hosts with a deficient immune system. The virus can disturb both innate and adaptive immunity by targeting dendritic cell (DC) functions. Monocytes, the precursors of DCs in vivo (MoDCs), are the primary targets of HCMV; they can also harbor latent virus.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear receptor superfamily that controls in a ligand-dependent manner the expression of a large array of genes involved in the control of energy homeostasis and in cell differentiation, proliferation, apoptosis, and the inflammatory process. Unexpectedly, genetic studies performed in mice established that PPARγ is essential for placental development. In the human placenta, PPARγ is specifically expressed in the trophoblast, both endocrine villous and invasive extravillous cytotrophoblasts (EVCT).

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) contributes to pathogenic processes in immunosuppressed individuals, in fetuses, and in neonates. In the present report, by using reporter gene activation assays and confocal microscopy in the presence of a specific antagonist, we show for the first time that HCMV infection induces peroxisome proliferator-activated receptor gamma (PPARgamma) transcriptional activity in infected cells. We demonstrate that the PPARgamma antagonist dramatically impairs virus production and that the major immediate-early promoter contains PPAR response elements able to bind PPARgamma, as assessed by electrophoretic mobility shift and chromatin immunoprecipitation assays.

View Article and Find Full Text PDF

Human Vgamma9Vdelta2 T lymphocytes recognize phosphorylated alkyl Ags. Isopentenyl pyrophosphate (IPP) was previously proposed as the main Ag responsible for Vgamma9Vdelta2 T cell activation by cancer cells. However, triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester (ApppI), a metabolite in which the isopentenyl moiety is linked to ATP, was reported in cells activated with aminobisphosphonates.

View Article and Find Full Text PDF

Monocytes/macrophages are key cells in the pathogenesis of human CMV (HCMV) infection, but the in vitro rate of viral production in primary human monocyte-derived macrophages (MDM) is considerably lower than in fibroblasts. Considering that the NF-kappaB signaling pathway is potentially involved in the replication strategy of HCMV through efficient transactivation of the major immediate-early promoter (MIEP), efficient viral replication, and late gene expression, we investigated the composition of the NF-kappaB complex in HCMV-infected MDMs and fibroblasts. Preliminary studies showed that HCMV could grow in primary MDM culture but that the viral titer in culture supernatants was lower than that observed in the supernatants of more permissive MRC5 fibroblasts.

View Article and Find Full Text PDF

Control of human cytomegalovirus (HCMV) infection and prevention of associated diseases in immunocompetent hosts are ensured mainly by CD8+ T cells, in spite of numerous viral tricks to impair antigen presentation and activation of T cells. At sites of primary infection, dendritic cells (DCs) are in the forefront to ensure capture of viral antigens and their capacity to bypass the effects of viral immunoevasins is crucial in moulding CD8+ T cell repertoire. In HCMV-seropositive donors, the spectrum of CD8+ T cells specificities was shown to include immediate-early (IE), early (E) and late (L) gene products, a surprising finding if we consider that expression of immunoevasins could paralyse infected DCs from the IE phase of infection.

View Article and Find Full Text PDF

An efficient host response to human cytomegalovirus (HCMV) infection may depend on rapid sensing of the infection by the innate immune response prior to deployment of viral immunosubversive functions. Control of HCMV dissemination could be ensured by apoptosis of cells immediately following infection. In the present report, it is demonstrated that changes in the ratio of c-FLIP to FLICE contributed to early sensitivity of HCMV-infected MRC5 fibroblasts to tumour necrosis factor alpha (TNF-alpha), providing an innate response to infection.

View Article and Find Full Text PDF

As shown by atopy patch tests, atopic dermatitis (AD) is dominated in its acute phase by the development of a specific T(H)2 response after exposure of the skin to common environmental antigens. Relying on our previous data showing that Staphylococcus aureus enterotoxin B (SEB) induced the activation of monocyte-derived dendritic cells (DCs) through Toll-like receptor (TLR)2 and that SEB-pulsed DCs commit allogenic naive T cells into T(H)2, we assessed monocytes sensitivity to SEB and lipopolysaccharide (LPS) in a group of children and adult patients with AD. Monocytes from AD patients (15 adults with mostly severe disease and 15 children with mild to moderate disease) exhibited an activated and tolerant state as supported by (i) secretion of large amounts of IL-6, IL-10, and tumor necrosis factor-alpha even in the absence of stimulation; (ii) their inability to modulate neither HLA-DR and CD54 nor TLR2 and TLR4 expression after in vitro challenge with SEB; (iii) inhibition of IL-12p70 secretion in response to LPS.

View Article and Find Full Text PDF

Z-ajoene is a garlic-derived compound with known anti-tumour properties. This report argues in favour of pro-apoptotic and cell cycle blockage activities of Z-ajoene on various cell lines involving activation of the p53-family gene products, p53, p63 and p73, at indicated doses. According to its known anti-proteasome activity, Z-ajoene induced a downregulation of MHC-class I expression at the surface of treated cells but did not impair their recognition by CD8+ T cells.

View Article and Find Full Text PDF

Background: Immune surveillance against microbes at sites of interface with environment involves immediate recognition of pathogen-associated molecular patterns by dendritic cells (DCs). According to their first-line position, DCs are key parameters for the establishment of an appropriate innate and adaptive response against pathogens to avoid disease development. Even though their role in pathogenesis is well known, bacterial toxins have been less examined for their ability to drive DC activation and T-cell polarization.

View Article and Find Full Text PDF

The discovery of p73, a p53-related protein with various isotypes resulting from different promoter usage or splicing events, provided new insights into regulation of neurogenesis and tumorigenesis. Among p73 isoforms described thus far, TA-truncated molecules (DeltaN) appeared as key proteins according to their antagonistic activity against transcription factor activity of p53 family members. We previously showed that infection by human cytomegalovirus (HCMV) induced drug resistance and altered p53- and p73-dependent apoptosis of infected cells through accumulation of DeltaN-p73alpha.

View Article and Find Full Text PDF

Recent studies have shown the involvement of the Fas system (Fas receptor and its ligand FasL) in cancerous processes. The absence or downregulation of Fas, reported in the majority of human tumors, conflicts with its presence in cancerous cells from the same tumors but maintained in vitro. Recently, the eventual role of environmental factors in the loss of Fas expression, or in the in vivo selection of a Fas-negative cell population has been suggested.

View Article and Find Full Text PDF

H2-deleted, HLA-A2, or HLA-B7 transgenic mice were used to identify new human cytomegalovirus (HCMV)-derived major histocompatibility complex class I-restricted epitopes. Three different approaches for mice immunization were compared for their ability to induce a cytotoxic CD8(+) T cell (CTL) response: (1). inoculation of infectious HCMV, (2).

View Article and Find Full Text PDF

The non-classical major histocompatibility complex class I molecule HLA-G is expressed mainly by extravillous trophoblasts at the materno-foetal interface. HLA-G has been found to bind endogenously processed nonameric peptides but its function as a restriction element for a cytotoxic T cell response to viruses with tropism for trophoblastic cells has never been demonstrated. In this study, candidate viral peptides derived from human cytomegalovirus (HCMV) pp65 (UL83), which stabilized the HLA-G molecule on HLA-G-transfected T2 cells, were identified.

View Article and Find Full Text PDF

Purpose: Host defense against infection by human cytomegalovirus (HCMV) is ensured in great part by cytotoxic CD8(+) T lymphocytes (CTLs) directed against the tegument protein pp65. The hyperimmediate release of incoming pp65 into the major histocompatibility complex (MHC) class I pathway after fusion of the virus with the cell membrane provides a very early mechanism of defense. In retinal pigment epithelial (RPE) cells HCMV is known to enter through endocytosis.

View Article and Find Full Text PDF