The molecular pathogenesis of renal cell carcinoma (RCC) is poorly understood. Whole-genome and exome sequencing followed by innovative tumorgraft analyses (to accurately determine mutant allele ratios) identified several putative two-hit tumor suppressor genes, including BAP1. The BAP1 protein, a nuclear deubiquitinase, is inactivated in 15% of clear cell RCCs.
View Article and Find Full Text PDFBackground: A comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines.
Results: The Bovine Gene Atlas was generated from 7.
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer.
View Article and Find Full Text PDFDNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost.
View Article and Find Full Text PDFHigh-density single-nucleotide polymorphism (SNP) arrays have revolutionized the ability of genome-wide association studies to detect genomic regions harboring sequence variants that affect complex traits. Extensive numbers of validated SNPs with known allele frequencies are essential to construct genotyping assays with broad utility. We describe an economical, efficient, single-step method for SNP discovery, validation and characterization that uses deep sequencing of reduced representation libraries (RRLs) from specified target populations.
View Article and Find Full Text PDFCytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking.
View Article and Find Full Text PDFTranscription factors play a key role in integrating and modulating biological information. In this study, we comprehensively measured the changing abundances of mRNAs over a time course of activation of human peripheral-blood-derived mononuclear cells ("macrophages") with lipopolysaccharide. Global and dynamic analysis of transcription factors in response to a physiological stimulus has yet to be achieved in a human system, and our efforts significantly advanced this goal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2007
Compared with understanding of biological shape and form, knowledge is sparse regarding what regulates growth and body size of a species. For example, the genetic and physiological causes of heterosis (hybrid vigor) have remained elusive for nearly a century. Here, we investigate gene-expression patterns underlying growth heterosis in the Pacific oyster (Crassostrea gigas) in two partially inbred (f = 0.
View Article and Find Full Text PDFMassively parallel signature sequencing is a sequencing-based method that provides quantitative gene expression data for nearly all transcripts in a particular ribonucleic acid sample. Although the sequencing technology is practiced as a service by a California-based company, we have developed methods for the handling and analysis of these data. This chapter describes the steps involved in obtaining data from massively parallel signature sequencing, aligning the signatures to genomic sequence, identifying novel transcripts, and performing quantitative analyses of genes expressed under conditions such as disease treatments.
View Article and Find Full Text PDFBackground: Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogenesis on rice plants at the transcriptome level.
View Article and Find Full Text PDFMassively parallel signature sequencing is an ultra-high throughput sequencing technology. It can simultaneously sequence millions of sequence tags, and, therefore, is ideal for whole genome analysis. When applied to expression profiling, it reveals almost every transcript in the sample and provides its accurate expression level.
View Article and Find Full Text PDFSmall RNAs play important regulatory roles in most eukaryotes, but only a small proportion of these molecules have been identified. We sequenced more than two million small RNAs from seedlings and the inflorescence of the model plant Arabidopsis thaliana. Known and new microRNAs (miRNAs) were among the most abundant of the nonredundant set of more than 75,000 sequences, whereas more than half represented lower abundance small interfering RNAs (siRNAs) that match repetitive sequences, intergenic regions, and genes.
View Article and Find Full Text PDFWe have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled.
View Article and Find Full Text PDFWe have generated 36,991,173 17-base sequence "signatures" representing transcripts from the model plant Arabidopsis. These data were derived by massively parallel signature sequencing (MPSS) from 14 libraries and comprised 268,132 distinct sequences. Comparable data were also obtained with 20-base signatures.
View Article and Find Full Text PDFLarge-scale sequencing of short mRNA-derived tags can establish the qualitative and quantitative characteristics of a complex transcriptome. We sequenced 12,304,362 tags from five diverse libraries of Arabidopsis thaliana using massively parallel signature sequencing (MPSS). A total of 48,572 distinct signatures, each representing a different transcript, were expressed at significant levels.
View Article and Find Full Text PDF