The 2019 coronavirus (COVID-19) pandemic has affected medical physics and radiation oncology departments and the delivery of radiation therapy. Among the changes implemented in response to the onset of the pandemic was a shift to remote treatment planning by health care institutions. The purpose of this study was to determine whether the overall frequency of errors changed after the implementation of remote radiation therapy treatment planning during the COVID-19 pandemic.
View Article and Find Full Text PDFPurpose: Our purpose was to assess the suitability of airway-implanted internal fiducial markers and an external surrogate of respiratory motion for motion management during radiation therapy of lung tumors.
Methods And Materials: We analyzed 4-dimensional computed tomography scans acquired during radiation therapy simulation for 28 patients with lung tumors who had anchored fiducial markers bronchoscopically implanted inside small airways in or near the tumor in a prospective trial. We used a linear mixed model to build population-based correlative models of tumor and surrogate motion.
Purpose: To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy.
Methods: Forty-one patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB-approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor.
Deep inspiration breath hold (DIBH) has dosimetric advantages for lung cancer patients treated with external beam therapy, but is difficult for many patients to perform. Proton therapy permits sparing of the downstream organs at risk (OAR). We compared conventionally fractionated proton (p) and photon(x) plans on both free breathing (FB) and DIBH planning CTs to determine the effect of DIBH with proton therapy.
View Article and Find Full Text PDFPurpose: Genomic profiling of biopsied tissue is the basis for precision cancer therapy. However, biopsied materials may not contain sufficient amounts of tumor deoxyribonucleonic acid needed for the analysis. We propose a method to determine the adequacy of specimens for performing genomic profiling by quantifying their metabolic activity.
View Article and Find Full Text PDF