Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood.
View Article and Find Full Text PDFBackground: High-risk neuroblastoma (HR-NBL) is an aggressive tumor of the sympathetic nervous system with high risk of relapse and poor overall survival. Allogeneic hematopoietic cell transplant (allo-HCT) has been used previously in HR-NBL patients; however, graft-versus-host-disease (GVHD) and disease progression have limited clinical application. Ex-vivo stimulated allogeneic natural killer (NK) cells represent a potential approach to enhance the graft-versus-tumor (GVT) effect without exacerbation of GVHD but have not shown efficacy in NBL.
View Article and Find Full Text PDFCancer immunotherapy has flourished over the last 10-15 years, transforming the practice of oncology and providing long-term clinical benefit to some patients. During this time, three distinct classes of immune checkpoint inhibitors, chimeric antigen receptor-T cell therapies specific for two targets, and two distinct classes of bispecific T cell engagers, a vaccine, and an oncolytic virus have joined cytokines as a standard of cancer care. At the same time, scientific progress has delivered vast amounts of new knowledge.
View Article and Find Full Text PDFEfficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms.
View Article and Find Full Text PDFCancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS.
View Article and Find Full Text PDFManufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant () gene resulting in -CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium.
View Article and Find Full Text PDFAlthough mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored.
View Article and Find Full Text PDFFew studies have examined biomarkers of stress and inflammation as underlying mechanisms of symptoms in adolescents and young adults with cancer. This study determined the feasibility of collecting blood and saliva samples across time, described the range and distribution of biomarkers, and explored the association of biomarkers with symptom adverse events (AEs). This longitudinal, prospective repeated-measures single-site feasibility study recruited = 10 children ( = 12.
View Article and Find Full Text PDFManufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( ) gene resulting in -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media.
View Article and Find Full Text PDFThe use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance.
View Article and Find Full Text PDFBackground: Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics.
View Article and Find Full Text PDFNatural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood.
View Article and Find Full Text PDFPredicting which patients will progress to metastatic disease after surgery for non-metastatic clear cell renal cell carcinoma (ccRCC) is difficult; however, recent data suggest that tumor immune cell infiltration could be used as a biomarker. We evaluated the quantity and type of immune cells infiltrating ccRCC tumors for associations with metastatic progression following attempted curative surgery. We quantified immune cell densities in the tumor microenvironment and validated our findings in two independent patient cohorts with multi-region sampling to investigate the impact of heterogeneity on prognostic accuracy.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells have been relatively ineffective against solid tumors. Low-dose radiation which can be delivered to multiple sites of metastases by targeted radionuclide therapy (TRT) can elicit immunostimulatory effects. However, TRT has never been combined with CAR T cells against solid tumors in a clinical setting.
View Article and Find Full Text PDFAlthough mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their applications in clinical settings remain challenging due to issues such as immunocompatibility and cell stability. MSC-derived exosomes, small vesicles carrying various bioactive molecules, are a promising cell-free therapy to promote tissue regeneration. However, it remains unknown mainly regarding the ability to customize the content of MSC-derived exosomes, how alterations in the MSC microenvironment influence exosome content, and the effects of such modifications on healing efficiency and mechanical properties in tissue regeneration.
View Article and Find Full Text PDFNumerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years.
View Article and Find Full Text PDFThe use of Bruton tyrosine kinase inhibitors, such as ibrutinib, to block B-cell receptor signaling has achieved a remarkable clinical response in several B-cell malignancies, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Acquired drug resistance, however, is significant and affects the long-term survival of these patients. Here, we demonstrate that the transcription factor early growth response gene 1 (EGR1) is involved in ibrutinib resistance.
View Article and Find Full Text PDFPediatr Blood Cancer
October 2023
Treatment of relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) remains a challenge, particularly in patients who do not respond to traditional chemotherapy or immunotherapy. The objective of this study was to assess the efficacy of fedratinib, a semi selective JAK2 inhibitor and venetoclax, a selective BCL-2 inhibitor, on human B-ALL using both single-agent and combinatorial treatments. The combination treatment of fedratinib and venetoclax improved killing of the human B-ALL cell lines RS4;11 and SUPB-15 in vitro over single-agent treatments.
View Article and Find Full Text PDFBackground: Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT.
View Article and Find Full Text PDFAn important paradigm in allogeneic hematopoietic cell transplantations (allo-HCTs) is the prevention of graft-versus-host disease (GVHD) while preserving the graft-versus-leukemia (GVL) activity of donor T cells. From an observational clinical study of adult allo-HCT recipients, we identified a CD4/CD8 double-positive T cell (DPT) population, not present in starting grafts, whose presence was predictive of ≥ grade 2 GVHD. Using an established xenogeneic transplant model, we reveal that the DPT population develops from antigen-stimulated CD8 T cells, which become transcriptionally, metabolically, and phenotypically distinct from single-positive CD4 and CD8 T cells.
View Article and Find Full Text PDF