Publications by authors named "Christian Cachard"

The Homodyned K distribution has been used successfully as a tool in the ultrasound characterization of sparse media, where the scatterer clustering parameter α accurately discriminates between media with different numbers of scatterers per resolution cell. However, as the number of scatterers increases and the corresponding amplitude statistics become Rician, the reliability of the α estimates decreases rapidly. In the present study, we assess the usefulness of α for the characterization of both sparse and concentrated media, using simulated independent and identically distributed (i.

View Article and Find Full Text PDF

Ultrasound (US) cavitation is currently being explored for low-invasive therapy techniques applied to a wide panel of pathologies. Because of the random behavior of cavitation, a real-time spatial monitoring system may be required. For this purpose, the US passive imaging techniques have been recently investigated.

View Article and Find Full Text PDF

Three dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach.

View Article and Find Full Text PDF

The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband.

View Article and Find Full Text PDF

Medical systems usually consider linear propagation of ultrasound, an approximation of reality. However, numerous studies have attempted to accurately simulate the nonlinear pressure wave distortion and to evaluate the contribution of harmonic frequencies. In such simulations, the computation time is very large, except for the method based on the angular spectrum scheme where the derivative order is reduced using the Fourier transform.

View Article and Find Full Text PDF

Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners.

View Article and Find Full Text PDF

Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm.

View Article and Find Full Text PDF

This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented.

View Article and Find Full Text PDF

There are several simulators for medical ultrasound (US) applications that can fully compute the nonlinear propagation on the transmitted pulse and the corresponding radio-frequency (RF) images. Creanuis is one recent model used to generate nonlinear RF images; however, the time requirements are long compared with linear models using a convolution strategy. In this paper, we describe an approach using convolution coupled with nonlinear information to create a pseudoacoustic tool that is able to quickly generate realistic US images.

View Article and Find Full Text PDF

Ultrasound attenuation is typically compensated for in clinical scanners by using time gain compensation (TGC). However, TGC operates in a frequency-independent fashion and therefore the spatial resolution of the echographic images degrades as the examination depth increases. In the current study, the capability of a multi-band attenuation compensation (MBAC) TGC technique to recover both magnitude and spatial resolution in lossy media was evaluated.

View Article and Find Full Text PDF

Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field.

View Article and Find Full Text PDF

To increase the contrast-to-tissue ratio (CTR) in contrast imaging or the signal-to-noise ratio (SNR) in tissue harmonic imaging, many multipulse transmission techniques have been suggested. This article first recalls the various imaging techniques proposed in the literature and then presents a mathematical background to synthesize and generalize most of the multipulse ultrasound imaging techniques. The formulation presented can be used to predict the relative amplitude of the nonlinear components in each frequency band and to design new transmission sequences to either increase or decrease specified nonlinear components in each harmonic band.

View Article and Find Full Text PDF

Quantitative ultrasound (QUS) based on backscatter coefficient (BSC) estimation has shown potential for tissue characterization. Beamforming using plane wave compounding has advantages for echographic, Doppler, and elastographic imaging; however, to date, plane wave compounding has not been experimentally evaluated for the purpose of BSC estimation. In this study, two BSC-derived parameters (i.

View Article and Find Full Text PDF

In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.

View Article and Find Full Text PDF

Conventional ultrasound Doppler techniques estimate the blood velocity exclusively in the axial direction to produce the sonograms and color flow maps needed for diagnosis of cardiovascular diseases. In this paper, a novel method to produce bi-dimensional maps of 2-D velocity vectors is proposed. The region of interest (ROI) is illuminated by plane waves transmitted at the pulse repetition frequency (PRF) in a fixed direction.

View Article and Find Full Text PDF

We present a method for automatic surgical tool localization in 3D ultrasound images based on line filtering, voxel classification and model fitting. This could possibly provide assistance for biopsy needle or micro-electrode insertion, or a robotic system performing this insertion. The line-filtering method is first used to enhance the contrast of the 3D ultrasound image, then a classifier is chosen to separate the tool voxels, in order to reduce the number of outliers.

View Article and Find Full Text PDF

This article proposes a robust technique for needle detection and tracking using three-dimensional ultrasound (3D US). It is difficult for radiologists to detect and follow the position of micro tools, such as biopsy needles, that are inserted in human tissues under 3D US guidance. To overcome this difficulty, we propose a method that automatically reduces the processed volume to a limited region of interest (ROI), increasing at the same time the calculation speed and the robustness of the proposed technique.

View Article and Find Full Text PDF

In ultrasound contrast imaging, many techniques based on multiple transmissions have been proposed to increase the contrast-to-tissue ratio (CTR). They are generally based on the response of static scatterers inside the imaged region. However, scatterer motion, for example in blood vessels, has an inevitable influence on multi-pulse techniques, which can either enhance or degrade the technique involved.

View Article and Find Full Text PDF

Nonlinear ultrasound methods are widely used in clinical applications for tissue or contrast harmonic imaging. Accurate non-linear imaging simulation tools are required in research studies for the development of new methods. However, in existing simulators, the possible inhomogeneity of the coefficient of non-linearity, which is generally observed in tissue and in particular when contrast agents are involved, has not yet been implemented.

View Article and Find Full Text PDF

Three-dimensional imaging with 2-D matrix probes is one of the most exciting recent ultrasound innovations. Unfortunately, the number of elements of a 2-D matrix probe is often very high, and reducing this number deteriorates the beam properties. In this paper, we propose a new sparse-array design technique with irregular element positioning, which significantly reduces the number of active elements as well as the grating-lobe level.

View Article and Find Full Text PDF

In freehand elastography, quasi-static tissue compression is applied through the ultrasound probe, and the corresponding axial strain is estimated by calculating the time shift between consecutive echo signals. This calculation typically suffers from a poor signal-to-noise ratio or from the decorrelation between consecutive echoes resulting from an erroneous axial motion impressed by the operator. This paper shows that the quality of elastograms can be improved through the integration of two distinct techniques in the strain estimation procedure.

View Article and Find Full Text PDF

The simulation of nonlinear propagation of ultrasound waves is typically based on the Kuznetsov-Zabolotskaya- Khokhlov equation. A set of simulators has been proposed in the literature but none of them takes into account a possible spatial 3-D variation of the nonlinear parameter in the investigated medium. This paper proposes a generalization of the angular spectrum method (GASM) including the spatial variation of the nonlinear parameter.

View Article and Find Full Text PDF

This paper investigates nonlinear B/A parameter imaging in ultrasound echo mode. First, the B/A estimation methods which can be extended to echo mode are identified. The finite amplitude approaches are found to be excellent candidates to assess the nonlinear parameter because of their experimental simplicity, supported by a strong mathematical background.

View Article and Find Full Text PDF

Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs.

View Article and Find Full Text PDF

The acoustical behaviour of straight micro tools (SMT), such as sub-millimetre needles or electrodes, is delicate and their automated maintaining in the image plane displayed to the practitioner must handle the extremely varying signal they backscatter. Because of the complex nature of the scattering by a narrow rod target, the localization process has to face two main tasks before being able to conduct 3D location: the reduction of the apparent diameter when this latter is visible, and the detection of the instrument and its real depth of penetration. In this paper, a methodology based on these steps is proposed, along with preliminary implementations of each of the steps.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: