Publications by authors named "Christian Bukh"

Plants have evolved different strategies to utilize various forms of nitrogen (N) from the environment. While regulation of plant growth and development in response to application of inorganic N forms has been characterized, our knowledge about the effect on cell wall structure and composition is quite limited. In this study, we analysed cell walls of Brachypodium distachyon supplied with three types of inorganic N (NH4NO3, NO3-, or NH4+).

View Article and Find Full Text PDF

Laccases of different biological origins have been widely investigated and these studies have elucidated fundamentals of the generic catalytic mechanism. However, other features such as surface properties and residues located away from the catalytic centres may also have impact on enzyme function. Here we present the crystal structure of laccase from Myceliophthora thermophila (MtL) to a resolution of 1.

View Article and Find Full Text PDF

Background: Plants and in particular grasses benefit from a high uptake of silicon (Si) which improves their growth and productivity by alleviating adverse effects of biotic and abiotic stress. However, the silicon present in plant tissues may have a negative impact on the processing and degradation of lignocellulosic biomass. Solutions to reduce the silicon content either by biomass engineering or development of downstream separation methods are therefore targeted.

View Article and Find Full Text PDF

This study aimed to address the proteolytic phenomena taking place in pork loins during prolonged storage at superchilling (SC) temperature. Loins were stored at either chilling (CH) conditions (2-4 °C) for 4 weeks or at SC temperature (around -1 °C) for 12 weeks. Storage at SC temperatures slowed down the rate of proteolysis in pork loins, so that final levels of most indicators for proteolysis, including after 12 weeks of SC storage were similar to those after 4 weeks at CH conditions.

View Article and Find Full Text PDF

Background: The amino acid profile of plants is an important parameter in assessments of their growth potential, resource-use efficiency and/or quality as food and feed. Screening studies may involve large number of samples but the classical amino acid analysis is limited by the fact that it is very time consuming with typical chromatographic run times of 70 min or more.

Results: We have here developed a high-throughput method for analysis of amino acid profiles in plant materials.

View Article and Find Full Text PDF

Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes.

View Article and Find Full Text PDF

The specific activities of crude and purified Coprinus cinereus laccase preparations could be enhanced by a factor of 10-12 by activation with copper ions. The copper to protein contents of purified non-activated laccase were 2.3+/-0.

View Article and Find Full Text PDF

The reactivity of the acido Ru(II) complexes cis-[RuCl(2)(LL)(2)], [RuCO(3)(LL)(2)], cis-[RuCO(3)-(bquin)(2)] (LL = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen); bquin = 2,2'-biquinoline) and cyclometalated Ru(II) derivatives of 2-phenylpyridine and 4-(2-tolyl)pyridine [Ru(o-C(6)H(4)-2-py)(phen)(2)]PF(6) (1), [Ru(o-C(6)H(3)-p-R-2-py)(bpy)(MeCN)(2)]PF(6) (2), and [Ru(o-C(6)H(3)-p-R-2-py)(phen)(MeCN)(2)]PF(6) (3) (R = H (a), Me (b)) toward laccase from Coriolus hirsutus has been investigated by conventional UV-vis spectroscopy at pH 3-7 and 25 degrees C. The acido and cyclometalated complexes are readily oxidized into the corresponding Ru(III) species, but the two types of complexes differ substantially in reactivity and obey different rate laws. The acido complexes are oxidized more slowly and the second-order kinetics, first-order in laccase and Ru(II), holds with the rate constants around 5 x 10(4) M(-1) s(-1) at pH 4.

View Article and Find Full Text PDF

A laccase from the fungus Trametes villosa (TviL) was investigated in order to elucidate the reaction mechanism of the reduction of dioxygen to water performed by this blue multi-copper oxidase. The ability of TviL to activate dioxygen was studied by stopped-flow experiments and under steady-state conditions. In the stopped-flow experiments TviL was reduced with a small excess of 4-hydroxyphenylacetic acid and afterwards the re-oxidation process was monitored by stopped-flow techniques by mixing with excess dioxygen.

View Article and Find Full Text PDF