This paper describes the application of poly(ether-block-amide) polymers, so-called Pebax, in fused filament fabrication (FFF). Pebax is a thermoplastic elastomer (TPE), a copolymer based on rigid polyamide and soft polyether blocks. By variation of the blocks, unique properties such as soft or rigid behaviour are tailored without additional additives and plasticisers.
View Article and Find Full Text PDFThe objective of this study is to describe the stress relaxation behavior of an epoxy-based fiber-reinforced material. An existing incremental formulation of an orthotropic linear viscoelastic material behavior was adapted to Voigt notation and to the special case of an isotropic material. Virtual relaxation tests on a representative volume element were performed, and the behavior of individual components of the relaxation tensor of the transversely isotropic composite material was determined.
View Article and Find Full Text PDFThe objectives of this study were to experimentally determine the effects of the stress relaxation of a cyanate-ester-based composite, derive and integrate constitutive equations into commercial FEM software, and apply this approach to understand the formation of residual stress in a typical aerospace structure-namely, a stiffened panel. In preliminary studies, a cyanate-ester-based composite with increased fracture toughness for high-temperature applications was developed. High curing temperatures up to 260 °C will inevitably lead to high process-induced stresses.
View Article and Find Full Text PDFAdditive manufacturing of high-performance polymers-such as PA12, PPS, PEEK, and PEKK-combined with industrial-grade carbon fibers with a high fiber volume ratio of up to 60% allows a weight reduction of over 40% compared to classic metal construction. Typically, these 3D-printed composites have a porosity of 10-30% depending on the material and the printing process parameters, which significantly reduces the quality of the part. Therefore, the additive manufacturing of load-bearing structural applications requires a proper consolidation after the printing process-the so-called 'additive fusion technology'-allowing close to zero void content in the consolidated part.
View Article and Find Full Text PDFThe joining of composites mostly relies on traditional joining technologies, such as film or paste adhesives, or mechanical fasteners. This study focuses on the appealing approach of using standard thermoplastic welding processes to join thermosets. To achieve this, a thermoplastic coupling layer is created by curing with a thermoset composite part.
View Article and Find Full Text PDFThis study presents two novel methods for in situ characterization of the reaction-diffusion process during the co-curing of a polyetherimide thermoplastic interlayer with an epoxy-amine thermoset. The first method was based on hot stage experiments using a computer vision point tracker algorithm to detect and trace diffusion fronts, and the second method used space- and time-resolved Raman spectroscopy. Both approaches provided essential information, e.
View Article and Find Full Text PDFCreating connection points for sandwich-structured composites without losing technical performance is key to realising optimal lightweight structures. The patented LiteWWeight technology presents cost-effective connections on sandwich panels in a fraction of a few seconds without predrilling. Ultrasonic equipment is used to insert a thermoplastic fastener into the substrate material and partially melt it into the porous internal structure.
View Article and Find Full Text PDFA cure kinetics investigation of a high temperature-resistant phenol novolac cyanate ester toughened with polyether sulfone (CE-PES blend) was undertaken using non-isothermal differential scanning calorimetry. Thin ply carbon fiber prepreg, based on the CE-PES formulation, was fabricated, and plates for further in-situ cure monitoring were manufactured using automated fiber placement. Online monitoring of the curing behavior utilizing Optimold sensors and Online Resin State software from Synthesites was carried out.
View Article and Find Full Text PDFThis paper describes the first-time application of polyhydroxy ether polymers, so-called phenoxy, to fused filament fabrication (FFF). Phenoxy is an amorphous thermoplastic polymer that is based on the same building blocks as epoxide resins. This similarity creates some unique properties such as dissolution to epoxide systems, which is why phenoxy is used as an additive for toughening.
View Article and Find Full Text PDFMaterials (Basel)
February 2021
The transition in the use of fiber composite structures from special applications to application in the mass market is accompanied by high demands in quality assurance. The consequential costs of unclear process design, unknown fiber orientations, and uncertainty regarding the effects of any fiber angle deviations can lead to market considerations (higher costs/time for development) in mass production that advise against the use of fiber composites, despite their superiority compared with conservative materials. Active monitoring of the deposited reinforcement layers and an evaluation of the real fiber orientation can form the basis of a robust industrial use of fiber composites by a first-time right production that is able to reduce the process variability.
View Article and Find Full Text PDFThe production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure.
View Article and Find Full Text PDF