The well-established sliding filament and cross-bridge theory explain the major biophysical mechanism responsible for a skeletal muscle's active behavior on a cellular level. However, the biomechanical function of skeletal muscles on the tissue scale, which is caused by the complex interplay of muscle fibers and extracellular connective tissue, is much less understood. Mathematical models provide one possibility to investigate physiological hypotheses.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2019
This work presents a novel microstructurally-based, multi-scale model describing the passive behaviour of skeletal muscle tissue. The model is based on the detailed description of the mechanically relevant parts of the microstructure. The effective constitutive material response is obtained by a homogenisation of mechanical energies and stresses from the micro- to the macroscale.
View Article and Find Full Text PDFAlthough recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin-myosin interactions, force enhancement based on actin-titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin's free molecular spring length and therefore results in increased titin forces during a subsequent stretch.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2015
Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data.
View Article and Find Full Text PDF