Publications by authors named "Christian Beren"

Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA-protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)-for which RNA-protein interactions can be controlled by varying the ionic strength of the buffer.

View Article and Find Full Text PDF

We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content-specifically, RNAs 3 and 4-assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell.

View Article and Find Full Text PDF

Unlike double-stranded DNA, single-stranded RNA can be spontaneously packaged into spherical capsids by viral capsid protein (CP) because it is a more compact and flexible polymer. Many systematic investigations of this self-assembly process have been carried out using CP from cowpea chlorotic mottle virus, with a wide range of sequences and lengths of single-stranded RNA. Among these studies are measurements of the relative packaging efficiencies of these RNAs into spherical capsids.

View Article and Find Full Text PDF

The physical properties of viral-length polyuridine (PolyU) RNAs, which cannot base-pair and form secondary structures, are compared with those of normal-composition RNAs, composed of comparable numbers of each of A, U, G and C nucleobases. In this protocol, we describe how to synthesize fluorescent polyU RNAs using the enzyme polynucleotide phosphorylase (PNPase) from Uridine diphosphate (UDP) monomers and how to fractionate the polydisperse synthesis mixture using gel electrophoresis, and, after electroelution, how to quantify the amount of polyU recovered with UV-Vis spectrophotometry. Dynamic light scattering was used to determine the hydrodynamic radii of normal-composition RNAs as compared to polyU.

View Article and Find Full Text PDF

Previous work has shown that purified capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) is capable of packaging both purified single-stranded RNA molecules of normal composition (comparable numbers of A, U, G, and C nucleobases) and of varying length and sequence, and anionic synthetic polymers such as polystyrene sulfonate. We find that CCMV CP is also capable of packaging polyU RNAs, which-unlike normal-composition RNAs-do not form secondary structures and which act as essentially structureless linear polymers. Following our canonical two-step assembly protocol, polyU RNAs ranging in length from 1000 to 9000 nucleotides (nt) are completely packaged.

View Article and Find Full Text PDF

Using the components of a particularly well-studied plant virus, cowpea chlorotic mottle virus (CCMV), we demonstrate the synthesis of virus-like particles (VLPs) with one end of the packaged RNA extending out of the capsid and into the surrounding solution. This construct breaks the otherwise perfect symmetry of the capsid and provides a straightforward route for monofunctionalizing VLPs using the principles of DNA nanotechnology. It also allows physical manipulation of the packaged RNA, a previously inaccessible part of the viral architecture.

View Article and Find Full Text PDF