Publications by authors named "Christian Bauckhage"

Rhizoctonia crown and root rot (RCRR), caused by , can cause severe yield and quality losses in sugar beet. The most common strategy to control the disease is the development of resistant varieties. In the breeding process, field experiments with artificial inoculation are carried out to evaluate the performance of genotypes and varieties.

View Article and Find Full Text PDF

Background: Unmanned aerial vehicle (UAV)-based image retrieval in modern agriculture enables gathering large amounts of spatially referenced crop image data. In large-scale experiments, however, UAV images suffer from containing a multitudinous amount of crops in a complex canopy architecture. Especially for the observation of temporal effects, this complicates the recognition of individual plants over several images and the extraction of relevant information tremendously.

View Article and Find Full Text PDF

Although CT and MRI are standard procedures in cirrhosis diagnosis, differentiation of etiology based on imaging is not established. This proof-of-concept study explores the potential of deep learning (DL) to support imaging-based differentiation of the etiology of liver cirrhosis. This retrospective, monocentric study included 465 patients with confirmed diagnosis of (a) alcoholic (n = 221) and (b) other-than-alcoholic (n = 244) cirrhosis.

View Article and Find Full Text PDF

Objective: To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings.

Methods: Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG.

View Article and Find Full Text PDF

Mediotemporal EEG characteristics are closely related to long-term memory formation. It has been reported that rhinal and hippocampal EEG measures reflecting the stability of phases across trials are better suited to distinguish subsequently remembered from forgotten trials than event-related potentials or amplitude-based measures. Theoretical models suggest that the phase of EEG oscillations reflects neural excitability and influences cellular plasticity.

View Article and Find Full Text PDF

Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress.

View Article and Find Full Text PDF

Elemental distribution images acquired by imaging X-ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real-time non-negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi-modal α+β Ti-6Al-6V-2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and β, were in superposition.

View Article and Find Full Text PDF

Understanding the response dynamics of plants to biotic stress is essential to improve management practices and breeding strategies of crops and thus to proceed towards a more sustainable agriculture in the coming decades. In this context, hyperspectral imaging offers a particularly promising approach since it provides non-destructive measurements of plants correlated with internal structure and biochemical compounds. In this paper, we present a cascade of data mining techniques for fast and reliable data-driven sketching of complex hyperspectral dynamics in plant science and plant phenotyping.

View Article and Find Full Text PDF

This paper addresses the problem of video alignment. We present efficient approaches that allow for spatiotemporal alignment of two sequences. Unlike most related works, we consider independently moving cameras that capture a 3D scene at different times.

View Article and Find Full Text PDF

Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large, high dimensional data cubes posing a significant challenge to data analysis.

View Article and Find Full Text PDF