We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of . The secretion system is encoded by the pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2.
View Article and Find Full Text PDFresistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in is the pathogenicity island (PAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells.
View Article and Find Full Text PDFThe acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics.
View Article and Find Full Text PDFWe present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features.
View Article and Find Full Text PDFAgrobacterium tumefaciens is a natural genetic engineer that transfers DNA into plants, which is the most applied process for generation of genetically modified plants. DNA transfer is mediated by a type IV secretion system in the cell envelope and extracellular T-pili. We here report the cryo-electron microscopic structures of the T-pilus at 3.
View Article and Find Full Text PDFSARS-CoV-2 infection of host cells starts by binding the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. VE607 - a commercially available compound composed of three stereoisomers - was described as an inhibitor of SARS-CoV-1.
View Article and Find Full Text PDFSARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1.
View Article and Find Full Text PDFSmallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking.
View Article and Find Full Text PDFHere, we experimentally expand understanding of the reactions and enzymes involved in ATCC 19377 S and metabolism by developing models that integrate gene expression analyzed by RNA-Seq, solution sulfur speciation, electron microscopy and spectroscopy. The metabolism model involves the conversion of to , S and mediated by the sulfur oxidase complex (Sox), tetrathionate hydrolase (TetH), sulfide quinone reductase (Sqr), and heterodisulfate reductase (Hdr) proteins. These same proteins, with the addition of rhodanese (Rhd), were identified to convert S to , and polythionates in the S metabolism model.
View Article and Find Full Text PDFThe junctional epithelium (JE) is a specialized portion of the gingiva that seals off the tooth-supporting tissues from the oral environment. This relationship is achieved via a unique adhesive extracellular matrix that is, in fact, a specialized basal lamina (sBL). Three unique proteins - amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1) - together with laminin-332 structure the supramolecular organization of this sBL and determine its adhesive capacity.
View Article and Find Full Text PDFType IV secretion systems are multiprotein complexes that mediate the translocation of macromolecules across the bacterial cell envelope. In Helicobacter pylori a type IV secretion system encoded by the cag pathogenicity island encodes 27 proteins and most are essential for virulence. We here present the identification and characterization of inhibitors of Cagα, a hexameric ATPase and member of the family of VirB11-like proteins that is essential for translocation of the CagA cytotoxin into mammalian cells.
View Article and Find Full Text PDFis a well studied phytopathogen given its various applications for deciphering host-pathogen interactions, bacterial communication, and capacity to transfer DNA fragments into host cells via a membrane protein system, the type IV secretion system (T4SS). T4SS mechanism is similar to the one responsible for antibiotic resistance gene transmission, and new knowledge gained could be applied to other organisms using such a mechanism. As well, is of economic importance in biotechnology due to its capacity to generate genetically modified plants.
View Article and Find Full Text PDFMany bacterial pathogens employ multicomponent protein complexes such as type IV secretion systems (T4SSs) to transfer virulence factors into host cells. Here we studied the interaction between two essential T4SS components: the very hydrophobic inner membrane protein VirB6, which may be a component of the translocation channel, and VirB10, which links the inner and outer bacterial membranes. To map the interaction site between these two T4SS components, we conducted alanine scanning and deleted six-amino acid stretches from the N-terminal periplasmic domain of VirB6 from Using the bacterial two-hybrid system to analyze the effects of these alterations on the VirB6-VirB10 interaction, we identified the amino acid regions 16-21 and 28-33 and Leu-18 in VirB6 as being required for this interaction.
View Article and Find Full Text PDFType IV secretion systems (T4SSs) are multiprotein assemblies that translocate macromolecules across the cell envelope of bacteria. X-ray crystallographic and electron microscopy (EM) analyses have increasingly provided structural information on individual T4SS components and on the entire complex. As of now, relatively little information has been available on the exact localization of the inner membrane-bound T4SS components, notably the mostly periplasmic VirB8 protein and the very hydrophobic VirB6 protein.
View Article and Find Full Text PDFThe increasing frequency of antimicrobial resistance is a problem of global importance. Novel strategies are urgently needed to understand and inhibit antimicrobial resistance gene transmission that is mechanistically related to bacterial virulence functions. The conjugative transfer of plasmids by type IV secretion systems is a major contributor to antimicrobial resistance gene transfer.
View Article and Find Full Text PDFIn this work, we provide evidence for the interactions between VirB8 and VirB10, two core components of the type IV secretion system (T4SS). Using nuclear magnetic resonance experiments, we identified residues on the β1-strand of Brucella VirB8 that undergo chemical shift changes in the presence of VirB10. Bacterial two-hybrid experiments confirm the importance of the β1-strand, whereas phage display experiments suggest that the α2-helix of VirB8 may also contribute to the interaction with VirB10.
View Article and Find Full Text PDFA specialized basal lamina (sBL) mediates adhesion of certain epithelial cells to the tooth. It is distinct because it does not contain collagens type IV and VII, is enriched in laminin-332, and includes three novel constituents called amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1). The objective of this study was to clarify the structural organization of the sBL.
View Article and Find Full Text PDFIn mammalian cells, the incorporation of the 21st amino acid, selenocysteine, into proteins is guided by the Sec machinery. The function of this protein complex requires several protein-protein and protein-RNA interactions, leading to the incorporation of selenocysteine at UGA codons. It is guided by stem-loop structures localized in the 3' untranslated regions of the selenoprotein-encoding genes.
View Article and Find Full Text PDFUnlabelled: Secretion systems are protein complexes essential for bacterial virulence and potential targets for antivirulence drugs. In the intracellular pathogen Brucella suis, a type IV secretion system mediates the translocation of virulence factors into host cells and it is essential for pathogenicity. VirB8 is a core component of the secretion system and dimerization is important for functionality of the protein complex.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
May 2019
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established.
View Article and Find Full Text PDFHelicobacter pylori is an important cause of gastric pathologies and persistent infection can lead to stomach cancer. Virulent H. pylori strains encode a type IV secretion system responsible for translocation of the oncogenic CagA protein into cells of the gastric mucosa.
View Article and Find Full Text PDFGram-negative bacteria use type IV secretion systems (T4SSs) for a variety of macromolecular transport processes that include the exchange of genetic material. The pKM101 plasmid encodes a T4SS similar to the well-studied model systems from Agrobacterium tumefaciens and Brucella suis Here, we studied the structure and function of TraE, a homolog of VirB8 that is an essential component of all T4SSs. Analysis by X-ray crystallography revealed a structure that is similar to other VirB8 homologs but displayed an altered dimerization interface.
View Article and Find Full Text PDFType IV secretion systems are multi-protein complexes that transfer macromolecules across the cell envelope of bacteria. Identifying the sites of interaction between the twelve proteins (VirB1-VirB11 and VirD4) that form these complexes is key to understanding their assembly and function. We have here used phage display, bacterial two-hybrid and fluorescence-based interaction assays to identify an N-terminal domain of the inner membrane protein VirB6 as a site of interaction with the envelope-spanning VirB10 protein.
View Article and Find Full Text PDFPotential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models.
View Article and Find Full Text PDFStud Hist Philos Biol Biomed Sci
September 2013
This paper examines the very disparate positions that various actors have taken towards the argument of subversion from within (a classical argument against the evolution of altruism by group selection) in a set of related debates on group selection, altruism and the handicap principle. Using this set of debates as a case study, this paper argues that different applications of epistemic values were one of the factors behind the disagreements between John Maynard Smith and Amotz Zahavi over a number of important evolutionary issues. The paper also argues that these different applications were connected to important epistemological differences related in part (but not solely) to their disciplinary background.
View Article and Find Full Text PDF