Publications by authors named "Christian Bar"

Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age.

View Article and Find Full Text PDF

Fabry disease is a multi-organ disease, caused by mutations in the GLA gene and leading to a progressive accumulation of glycosphingolipids due to enzymatic absence or malfunction of the encoded alpha-galactosidase A. Since pathomechanisms are not yet fully understood and available treatments are not efficient for all mutation types and tissues, further research is highly needed. This research involves many different model types, with significant effort towards the establishment of an in vivo model.

View Article and Find Full Text PDF

Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart.

View Article and Find Full Text PDF

Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature and are found in bacteria, fungi, insects, and plants. Their biosynthesis via oxidative phenol coupling (OPC) is catalyzed by cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes in mushroom-forming fungi (Basidiomycota) are unknown.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) have emerged as promising diagnostic biomarkers. Here, we investigated the cardiac-expressed and plasma-detectable lncRNA PDE4DIPP6 as a biomarker for non-ST-segment elevation myocardial infarction (NSTEMI), specifically assessing its potential to enhance the diagnostic efficacy of high-sensitivity cardiac troponin (hs-cTnT).

Methods And Results: The study enrolled individuals presenting with suspected acute coronary syndrome (ACS).

View Article and Find Full Text PDF

The X-linked lysosomal storage disorder Fabry disease originates from GLA gene mutations causing α-galactosidase A enzyme deficiency. Here we generated the GLA knockout hiPSC line MHHi001-A-15 (GLA-KOhiPSC) as an in vitro Fabry disease model by targeting exon 2 of the GLA gene by CRISPR/Cas9 in the established control hiPSC line MHHi001-A. GLA-KOhiPSCs retained the expression of pluripotency markers, trilineage differentiation potential, as well as normal karyotype and stem cell morphology but lacked α-galactosidase A enzyme activity.

View Article and Find Full Text PDF

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disorder, but existing treatments mainly relieve symptoms rather than address root causes; research on circular RNAs (circRNAs) offers new insights.
  • A specific circRNA, circZFPM2, was found to be significantly upregulated in HCM cardiac tissue and plays a crucial role in regulating heart cell functions, as shown through experiments in different cell models.
  • Delivering circZFPM2 improved heart cell health by reducing hypertrophy and increasing cell survival, suggesting it could be a potential new target for HCM therapies based on its positive effects on heart function and mitochondrial health.
View Article and Find Full Text PDF

Fabry disease (FD) is a rare and inherited monogenetic disease caused by mutations in the X-chromosomal alpha-galactosidase A gene GLA concomitant with accumulation of its substrate globotriaosylceramide (Gb3) and multi-organ symptoms. We derived an induced pluripotent stem cell line, MHHi029-A, from a male FD patient carrying a c.959A > T missense mutation in the GLA gene.

View Article and Find Full Text PDF

This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered.

View Article and Find Full Text PDF

Ventricular tachyarrhythmia (VTA) are frequent arrhythmias in patients with hypertrophic cardiomyopathy (HCM). Representing a major risk factor for sudden cardiac death, Holter ECG at first clinical presentation appears insufficient. This study aims to investigate the ability of routinely obtained parameters associated with myocardial remodeling in stratifying for VTA in HCM.

View Article and Find Full Text PDF

Elucidating the pathobiological mechanisms underlying post-acute pulmonary sequelae following SARS-CoV-2 infection is essential for early interventions and patient stratification. Here, we investigated the potential of microRNAs (miRNAs) as theranostic agents for pulmoprotection in critical illness survivors. Multicenter study including 172 ICU survivors.

View Article and Find Full Text PDF

Background: Patients with heart failure with reduced ejection fraction (HFrEF) and central sleep apnea (CSA) are at a very high risk of fatal outcomes.

Objective: To test whether the circulating miRNome provides additional information for risk stratification on top of clinical predictors in patients with HFrEF and CSA.

Methods: The study included patients with HFrEF and CSA from the SERVE-HF trial.

View Article and Find Full Text PDF

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes.

View Article and Find Full Text PDF

Takotsubo syndrome (TTS), an acute cardiac condition characterized by transient wall motion abnormalities mostly of the left ventricle, results in difficulties in diagnosing patients. We set out to present a detailed blood analysis of TTS patients analyzing novel markers to understand the development of TTS. Significant differences in proinflammatory cytokine expression patterns and sex steroid and glucocorticoid receptor (GR) expression levels were observed in the TTS patient collected.

View Article and Find Full Text PDF

Aims: Heart failure (HF) after myocardial infarction (MI) is a major cause of morbidity and mortality. We sought to investigate the functional importance of cardiac iron status after MI and the potential of pre-emptive iron supplementation in preventing cardiac iron deficiency (ID) and attenuating left ventricular (LV) remodelling.

Methods And Results: MI was induced in C57BL/6J male mice by left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Coronaviruses are pathogens thought to primarily affect the respiratory tracts of humans. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 was also marked mainly by its symptoms of respiratory illness, which were named coronavirus disease 2019 (COVID-19). Since its initial discovery, many other symptoms have been linked to acute SARS-CoV-2 infections as well as to the long-term outcomes of COVID-19 patients.

View Article and Find Full Text PDF

Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels.

View Article and Find Full Text PDF

Considerable progress has been made in managing cancer; however, with these advancements comes the discovery of previously unknown adverse events. In particular, the prolonged lifespan of patients has uncovered severe cardiotoxic side effects of widely used anti-cancer therapies, which restrict their administration and thus compromise the success of the seemingly most suitable treatments in large cancer patient cohorts. Vice versa, cardiovascular diseases can also promote both the onset and progression of different cancers, highlighting that both conditions are deeply interlinked.

View Article and Find Full Text PDF

Protein microarray screenings identified fungal natural products from the azaphilone family as potent inhibitors of SARS-CoV-2 spike protein binding to host ACE2 receptors. Cohaerin F, as the most potent substance from the cohaerin group, led to more than 50% less binding of ACE2 and SARS-CoV-2 spike protein. A survey for structurally related azaphilones yielded the structure elucidation of six new multiformins E-J (-) and the revision of the stereochemistry of the multiformins.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the leading causes of death globally and urgently require new novel therapeutic strategies. Gene therapy is the application of gene modulation technology to treat abnormal gene expression under disease conditions. Viral- and nonviral-based gene delivery systems are the foundation of gene modulation in target cells.

View Article and Find Full Text PDF

In vitro modelling the complex (patho-) physiological conditions of the heart is a major challenge in cardiovascular research. In recent years, methods based on three-dimensional (3D) cultivation approaches have steadily evolved to overcome the major limitations of conventional adherent two-dimensional (2D) monolayer cultivation. These 3D approaches aim to study, reproduce or modify fundamental native features of the heart such as tissue organization and cardiovascular microenvironment.

View Article and Find Full Text PDF