Publications by authors named "Christian Bahamon"

Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver.

View Article and Find Full Text PDF

Loss-of-function mutations in frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of mutant tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Loss-of-function mutations in lung cancer lead to treatment resistance, emphasizing the importance of targeted therapies.
  • Research has shown that the glutamine antagonist DRP-104 can slow the growth of mutant tumors by inhibiting nucleotide synthesis and boosting immune responses.
  • DRP-104 also reverses T cell exhaustion, enhancing CD4 and CD8 T cell function and improving responses to anti-PD1 therapies, suggesting a promising treatment future for lung cancer patients with these mutations.
View Article and Find Full Text PDF

Next-generation sequencing technologies allowed sequencing of thousands of genomes. However, there are genomic regions that remain difficult to characterize, including telomeres, centromeres, and other low-complexity regions, as well as transposable elements and endogenous viruses. Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) are closely related viruses that infect most humans and can integrate their genomes into the telomeres of infected cells.

View Article and Find Full Text PDF