Publications by authors named "Christian B Mendl"

No definitive evidence of spacetime supersymmetry (SUSY) that transmutes fermions into bosons and vice versa has been revealed in nature so far. Moreover, the question of whether spacetime SUSY in 2 + 1 and higher dimensions can emerge in generic lattice microscopic models remains open. Here, we introduce a lattice realization of a single Dirac fermion in 2 + 1 dimensions with attractive interactions that preserves both time-reversal and chiral symmetries.

View Article and Find Full Text PDF

Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane.

View Article and Find Full Text PDF

We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval.

View Article and Find Full Text PDF

While originally discovered in the context of the Gaussian unitary ensemble, the Tracy-Widom distribution also rules the height fluctuations of growth processes. This suggests that there might be other nonequilibrium processes in which the Tracy-Widom distribution plays an important role. In our contribution we study one-dimensional systems with domain wall initial conditions.

View Article and Find Full Text PDF

In this paper, we study numerical discretizations to solve density functional models in the "strictly correlated electrons" (SCE) framework. Unlike previous studies, our work is not restricted to radially symmetric densities. In the SCE framework, the exchange-correlation functional encodes the effects of the strong correlation regime by minimizing the pairwise Coulomb repulsion, resulting in an optimal transport problem.

View Article and Find Full Text PDF

As recently proposed, the long-time behavior of equilibrium time-correlation functions for one-dimensional systems are expected to be captured by a nonlinear extension of fluctuating hydrodynamics. We outline the predictions from the theory aimed at the comparison with molecular dynamics. We report on numerical simulations of a fluid with a hard-shoulder potential and of a hard-point gas with alternating masses.

View Article and Find Full Text PDF

Recent work has developed a nonlinear hydrodynamic fluctuation theory for a chain of coupled anharmonic oscillators governing the conserved fields, namely, stretch, momentum, and energy. The linear theory yields two propagating sound modes and one diffusing heat mode, all three with diffusive broadening. In contrast, the nonlinear theory predicts that, at long times, the sound mode correlations satisfy Kardar-Parisi-Zhang scaling, while the heat mode correlations have Lévy-walk scaling.

View Article and Find Full Text PDF

We study the equilibrium time correlations for the conserved fields of classical anharmonic chains and argue that their dynamic correlator can be predicted on the basis of nonlinear fluctuating hydrodynamics. In fact, our scheme is more general and would also cover other one-dimensional Hamiltonian systems, for example, classical and quantum fluids. Fluctuating hydrodynamics is a nonlinear system of conservation laws with noise.

View Article and Find Full Text PDF

We derive and analyze a hierarchy of approximations to the strongly correlated limit of the Hohenberg-Kohn functional. These "density representability approximations" are obtained by first noting that in the strongly correlated limit, N-representability of the pair density reduces to the requirement that the pair density must come from a symmetric N-point density. One then relaxes this requirement to the existence of a representing symmetric k-point density with k < N.

View Article and Find Full Text PDF

The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered.

View Article and Find Full Text PDF

We study, both analytically and numerically, the Boltzmann transport equation for the Hubbard chain with nearest-neighbor hopping and spatially homogeneous initial condition. The time-dependent Wigner function is matrix-valued because of spin. The H theorem holds.

View Article and Find Full Text PDF