Publications by authors named "Christian Antfolk"

Background: Intra-individual variability (IIV), a measure of variance within an individual's performance, has been demonstrated as metrics of brain responses for neural functionality. However, how mental fatigue modulates IIV remains unclear. Consequently, the development of robust mental fatigue detection methods at the single-trial level is challenging.

View Article and Find Full Text PDF

The spatial distribution of muscle fibre activity is of interest in guiding therapy and assessing recovery of motor function following injuries of the peripheral or central nervous system. This paper presents a new method for stable estimation of motor unit territory centres from high-density surface electromyography (HDsEMG). This completely automatic process applies principal component compression and a rotatable Gaussian surface fit to motor unit action potential (MUAP) distributions to map the spatial distribution of motor unit activity.

View Article and Find Full Text PDF

Objective: Evaluation of the hand function affected when replacing a malfunctioning hand by a bionic hand.

Design: Case report.

Subjects: One individual that wished for a better quality of life after unsatisfying hand function following a replantation.

View Article and Find Full Text PDF

Mental fatigue has attracted much attention from researchers as it plays a key role in performance efficiency and safety situations. Functional connectivity analysis using graph theory is an effective method for revealing changes in cognition resources influenced by mental fatigue. Previous studies have revealed that functional networks are dynamically reorganized.

View Article and Find Full Text PDF

Nerve rehabilitation following nerve injury or surgery at the wrist level is a lengthy process during which not only peripheral nerves regrow towards receptors and muscles, but also the brain undergoes plastic changes. As a result, at the time when nerves reach their targets, the brain might have already allocated some of the areas within the somatosensory cortex that originally processed hand signals to some other regions of the body. The aim of this study is to show that it is possible to evoke a variety of somatotopic sensations related to the hand while stimulating proximally to the injury, therefore, providing the brain with the relevant inputs from the hand regions affected by the nerve damage.

View Article and Find Full Text PDF

Measuring human joint dynamics is crucial for understanding how our bodies move and function, providing valuable insights into biomechanics and motor control. Cerebral palsy (CP) is a neurological disorder affecting motor control and posture, leading to diverse gait abnormalities, including altered knee angles. The accurate measurement and analysis of knee angles in individuals with CP are crucial for understanding their gait patterns, assessing treatment outcomes, and guiding interventions.

View Article and Find Full Text PDF

Tactile feedback plays a vital role in inducing ownership and improving motor control of prosthetic hands. However, commercially available prosthetic hands typically do not provide tactile feedback and because of that the prosthetic user must rely on visual input to adjust the grip. The classical rubber hand illusion (RHI) where a brush is stroking the rubber hand, and the user's hidden hand synchronously can induce ownership of a rubber hand.

View Article and Find Full Text PDF

The smallest voluntarily controlled structure of the human body is the motor unit (MU), comprised of a motoneuron and its innervated fibres. MUs have been investigated in neurophysiology research and clinical applications, primarily using electromyographic (EMG) techniques. Nonetheless, EMG (both surface and intramuscular) has a limited detection volume.

View Article and Find Full Text PDF

Ultrasound can detect individual motor unit (MU) activity during voluntary isometric contractions based on their subtle axial displacements. The detection pipeline, currently performed offline, is based on displacement velocity images and identifying the subtle axial displacements. This identification can preferably be made through a blind source separation (BSS) algorithm with the feasibility of translating the pipeline fromto.

View Article and Find Full Text PDF

Background: Individual motor units have been imaged using ultrafast ultrasound based on separating ultrasound images into motor unit twitches (unfused tetanus) evoked by the motoneuronal spike train. Currently, the spike train is estimated from the unfused tetanic signal using a Haar wavelet method (HWM). Although this ultrasound technique has great potential to provide comprehensive access to the neural drive to muscles for a large population of motor units simultaneously, the method has a limited identification rate of the active motor units.

View Article and Find Full Text PDF

The various existing measures to quantify upper limb use from wrist-worn inertial measurement units can be grouped into three categories: 1) Thresholded activity counting, 2) Gross movement score and 3) machine learning. However, there is currently no direct comparison of all these measures on a single dataset. While machine learning is a promising approach to detecting upper limb use, there is currently no knowledge of the information used by machine learning measures and the data-related factors that influence their performance.

View Article and Find Full Text PDF

Background And Objective: Analysis of motor unit activity is important for assessing and treating diseases or injuries affecting natural movement. State-of-the-art decomposition translates high-density surface electromyography (HDsEMG) into motor unit activity. However, current decomposition methods offer far from complete separation of all motor units.

View Article and Find Full Text PDF

Background: Recent findings have shown that imaging voluntarily activated motor units (MUs) by decomposing ultrasound-based displacement images provides estimates of unfused tetanic signals evoked by spinal motoneurons' neural discharges (spikes). Two methods have been suggested to estimate its spike trains: band-pass filter (BPM) and Haar wavelet transform (HWM). However, the methods' optimal parameters and which method performs the best are unknown.

View Article and Find Full Text PDF

Although seemingly effortless, the control of the human hand is backed by an elaborate neuro-muscular mechanism. The end result is typically a smooth action with the precise positioning of the joints of the hand and an exerted force that can be modulated to enable precise interaction with the surroundings. Unfortunately, even the most sophisticated technology cannot replace such a comprehensive role but can offer only basic hand functionalities.

View Article and Find Full Text PDF

By being predicated on supervised machine learning, pattern recognition approaches to myoelectric prosthesis control require electromyography (EMG) training data collected concurrently with every detectable motion. Within this framework, calibration protocols for simultaneous control of multifunctional prosthetic hands rapidly become prohibitively long-the number of unique motions grows geometrically with the number of controllable degrees of freedom (DoFs). This paper proposes a technique intended to circumvent this combinatorial explosion.

View Article and Find Full Text PDF

Processing myoelectrical activity in the forearm has for long been considered a promising framework to allow transradial amputees to control motorized prostheses. In spite of expectations, contemporary muscle-computer interfaces built for this purpose typically fail to satisfy one or more important desiderata, such as accuracy, robustness, and/or naturalness of control, in part due to difficulties in acquiring high-quality signals continuously outside laboratory conditions. In light of such problems, surgically implanted electrodes have been made a viable option that allows for long-term acquisition of intramuscular electromyography (iEMG) measurements of spatially precise origin.

View Article and Find Full Text PDF

Most commercial prosthetic hands lack closed-loop feedback, thus, a lot of research has been focusing on implementing sensory feedback systems to provide the user with sensory information during activities of daily living. This study evaluates the possibilities of using a microphone and electrotactile feedback to identify different textures. A condenser microphone was used as a sensor to detect the friction sound generated from the contact between different textures and the microphone.

View Article and Find Full Text PDF

Control of contemporary, multi-joint prosthetic hands is commonly realized by using electromyographic signals from the muscles remaining after amputation at the forearm level. Although this principle is trying to imitate the natural control structure where muscles control the joints of the hand, in practice, myoelectric control provides only basic hand functions to an amputee using a dexterous prosthesis. This study aims to provide an annotated database of high-density surface electromyographic signals to aid the efforts of designing robust and versatile electromyographic control interfaces for prosthetic hands.

View Article and Find Full Text PDF

Background: Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-time. The framework uses multitask neural networks and domain-informed regularization in order to automatically find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration.

View Article and Find Full Text PDF

Introduction: Sensory feedback in hand prostheses is lacking but wished for. Many amputees experience a phantom hand map on their residual forearm. When the phantom hand map is touched, it is experienced as touch on the amputated hand.

View Article and Find Full Text PDF

Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation.

View Article and Find Full Text PDF

The measurement of human vital signs is a highly important task in a variety of environments and applications. Most notably, the electrocardiogram (ECG) is a versatile signal that could indicate various physical and psychological conditions, from signs of life to complex mental states. The measurement of the ECG relies on electrodes attached to the skin to acquire the electrical activity of the heart, which imposes certain limitations.

View Article and Find Full Text PDF

The use of natural myoelectric interfaces promises great value for a variety of potential applications, clinical and otherwise, provided a computational mapping between measured neuromuscular activity and executed motion can be approximated to a satisfactory degree. However, prevalent methods intended for such decoding of movement intent from the surface electromyogram (sEMG) based on pattern recognition typically do not capitalize on the inherently time series-like nature of the acquired signals. In this paper, we present the results from a comparative study in which the performances of traditional cross-sectional pattern recognition methods were compared with that of a classifier built on the natural assumption of temporal ordering by utilizing a long short-term memory (LSTM) neural network.

View Article and Find Full Text PDF

Hand movement is controlled by a large number of muscles acting on multiple joints in the hand and forearm. In a forearm amputee the control of a hand prosthesis is traditionally depending on electromyography from the remaining forearm muscles. Technical improvements have made it possible to safely and routinely implant electrodes inside the muscles and record high-quality signals from individual muscles.

View Article and Find Full Text PDF