Cell-cell interactions are important to numerous biological systems, including tissue microenvironments, the immune system, and cancer. However, current methods for studying cell combinations and interactions are limited in scalability, allowing just hundreds to thousands of multicell assays per experiment; this limited throughput makes it difficult to characterize interactions at biologically relevant scales. Here, we describe a paradigm in cell interaction profiling that allows accurate grouping of cells and characterization of their interactions for tens to hundreds of thousands of combinations.
View Article and Find Full Text PDFDroplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter.
View Article and Find Full Text PDFSingle-cell RNA sequencing has emerged as a powerful tool for characterizing cells, but not all phenotypes of interest can be observed through changes in gene expression. Linking sequencing with optical analysis has provided insight into the molecular basis of cellular function, but current approaches have limited throughput. Here, we present a high-throughput platform for linked optical and gene expression profiling of single cells.
View Article and Find Full Text PDFDroplet microfluidics enables massively-parallel analysis of single cells, biomolecules, and chemicals, making it valuable for high-throughput screens. However, many hydrophobic analytes are soluble in carrier oils, preventing their quantitative analysis with the method. We apply Printed Droplet Microfluidics to construct defined reactions with chemicals and cells incubated under air on an open array.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control.
View Article and Find Full Text PDF