As the environmental effects of plastics are of ever greater concern, the industry is driven towards more sustainable polymers. Besides sustainability, our fast-developing society imposes the need for highly versatile materials. Whereas aliphatic polyesters (PEs) are widely adopted and studied as next-generation biobased and (bio)degradable materials, their sulfur-containing analogs, polythioesters (PTEs), only recently gained attention.
View Article and Find Full Text PDFThe hydrogenative conversions of the biobased platform molecules 4-hydroxycyclopent-2-enone and cyclopentane-1,3-dione to their corresponding 1,3-diols are established using a pre-activated Knölker-type iron catalyst. The catalyst exhibits a high selectivity for ketone reduction, and does not induce dehydration. Moreover, by using different substituents of the ligand, the cis-trans ratio of the products can be affected substantially.
View Article and Find Full Text PDFCyclopentane-1,3-diol () has gained renewed attention as a potential building block for polymers and fuels because its synthesis from hemicellulose-derived 4-hydroxycyclopent-2-enone () was recently disclosed. However, cyclopentane-1,3-dione (), which is a constitutional isomer of , possesses a higher chemical stability and can therefore afford higher carbon mass balances and higher yields of in the hydrogenation reaction under more concentrated conditions. In this work, the hydrogenation of into over a commercial Ru/C catalyst was systematically investigated on a bench scale through kinetic studies and variation of reaction conditions.
View Article and Find Full Text PDF