Publications by authors named "Christiaan Vermeulen"

Abnormalities in the morphology of the corpus callosum have been found to be involved in cognitive impairments or abnormal behaviour in patients with mental disorders such as schizophrenia and bipolar disorder. The present study investigated morphological shape differences of the corpus callosum in a large cohort of 223 participants between normal, schizophrenic and bipolar patients on MRI scans, CT scans and cadaver samples. Healthy samples were compared to a mental disorder population sample to determine morphological shapes variations associated with schizophrenia and bipolar disorder.

View Article and Find Full Text PDF

Developing targeted α-therapies has the potential to transform how diseases are treated. In these interventions, targeting vectors are labelled with α-emitting radioisotopes that deliver destructive radiation discretely to diseased cells while simultaneously sparing the surrounding healthy tissue. Widespread implementation requires advances in non-invasive imaging technologies that rapidly assay therapeutics.

View Article and Find Full Text PDF

Uranium-230 (t = 20.8 d) is an alpha-emitting radionuclide that has potential application in targeted alpha therapy (TAT) of cancer. Its parent isotope Pa (t = 17.

View Article and Find Full Text PDF

Background: For almost a decade, terbium radioisotopes have been explored for their potential theragnostic application in nuclear medicine: Tb and Tb are the radioisotopes identified for PET or SPECT imaging, while Tb and Tb have suitable decay characteristics for α- and combined β/Auger-e-therapy, respectively. In the present study, the application of Tb, in combination with PSMA-617 for imaging of prostate-specific membrane antigen (PSMA)-positive prostate cancer, was demonstrated in a preclinical setting and in a patient with metastatic castration-resistant prostate cancer (mCRPC).

Results: Tb was produced at the ISOLDE facility at CERN/Geneva, Switzerland, by spallation, followed by on-line mass separation.

View Article and Find Full Text PDF

Background: Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter Tb [(T = 17.

View Article and Find Full Text PDF

Radionuclides find widespread use in medical technologies for treating and diagnosing disease. Among successful and emerging radiotherapeutics, Sb has unique potential in targeted therapeutic applications for low-energy electron-emitting isotopes. Unfortunately, developing Sb-based drugs has been slow in comparison to other radionuclides, primarily due to limited accessibility.

View Article and Find Full Text PDF

The existence of theragnostic pairs of radionuclides allows the preparation of radiopharmaceuticals for diagnostic and therapeutic purposes. Radiolanthanides, such as Lu, are successfully used for therapeutic purposes; however, a perfect diagnostic match is currently not available for clinical use. A unique, multi-disciplinary study was performed using Tb (T = 17.

View Article and Find Full Text PDF

Tb represents a powerful alternative to currently used α-emitters: the relatively short half-life (T = 4.1 h), low α-energy (3.97 MeV, I = 16.

View Article and Find Full Text PDF

Background: Terbium has attracted the attention of researchers and physicians due to the existence of four medically interesting radionuclides, potentially useful for SPECT and PET imaging, as well as for α- and β(-)-radionuclide therapy. The aim of this study was to produce (152)Tb (T 1/2 = 17.5 h, Eβ+av = 1140 keV) and evaluate it in a preclinical setting in order to demonstrate its potential for PET imaging.

View Article and Find Full Text PDF

Background: The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process.

View Article and Find Full Text PDF

PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET.

View Article and Find Full Text PDF

Introduction: (44)Sc, a PET radionuclide, has promising decay characteristics (T1/2 = 3.97 h, Eβ(+)av = 632 keV) for nuclear imaging and is an attractive alternative to the short-lived (68)Ga (T1/2 = 68 min, Eβ(+)av = 830 keV). The aim of this study was the optimization of the (44)Sc production process at an accelerator, allowing its use for preclinical and clinical PET imaging.

View Article and Find Full Text PDF