Publications by authors named "Christiaan Klijn"

KRAS, which is mutated in ∼30% of all cancers, activates the RAF-MEK-ERK signaling cascade. CRAF is required for growth of KRAS mutant lung tumors, but the requirement for CRAF kinase activity is unknown. Here, we show that subsets of KRAS mutant tumors are dependent on CRAF for growth.

View Article and Find Full Text PDF

Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAF-mutant melanoma, they are ineffective in non-BRAF mutant cells. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAF- and NRAS-mutant melanomas.

View Article and Find Full Text PDF

Hippo pathway dysregulation occurs in multiple cancers through genetic and nongenetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defining tumors that are Hippo pathway-dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type-agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers.

View Article and Find Full Text PDF

With only a fraction of patients responding to cancer immunotherapy, a better understanding of the entire tumor microenvironment is needed. Using single-cell transcriptomics, we chart the fibroblastic landscape during pancreatic ductal adenocarcinoma (PDAC) progression in animal models. We identify a population of carcinoma-associated fibroblasts (CAF) that are programmed by TGFβ and express the leucine-rich repeat containing 15 (LRRC15) protein.

View Article and Find Full Text PDF

Mutations in and (encoding the protein Nrf2) are prevalent in both adeno and squamous subtypes of non-small cell lung cancer, as well as additional tumor indications. The consequence of these mutations is stabilized Nrf2 and chronic induction of a battery of Nrf2 target genes. We show that knockdown of Nrf2 caused modest growth inhibition of cells growing in two-dimension, which was more pronounced in cell lines expressing mutant KEAP1.

View Article and Find Full Text PDF

Targeting KRAS mutant tumors through inhibition of individual downstream pathways has had limited clinical success. Here we report that RAF inhibitors exhibit little efficacy in KRAS mutant tumors. In combination drug screens, MEK and PI3K inhibitors synergized with pan-RAF inhibitors through an RAS-GTP-dependent mechanism.

View Article and Find Full Text PDF

The Hippo signaling pathway regulates organ size and plays critical roles in maintaining tissue growth, homeostasis, and regeneration. Dysregulated in a wide spectrum of cancers, in mammals, this pathway is regulated by two key effectors, YAP and TAZ, that may functionally overlap. We found that TAZ promoted liver inflammation and tumor development.

View Article and Find Full Text PDF

Mutant KRAS represents one of the most frequently observed oncogenes in NSCLC, yet no therapies are approved for tumors that express activated KRAS variants. While there is strong rationale for the use of MEK inhibitors to treat tumors with activated RAS/MAPK signaling, these have proven ineffective clinically. We therefore implemented a CRISPR screening approach to identify novel agents to sensitize KRAS mutant NSCLC cells to MEK inhibitor treatment.

View Article and Find Full Text PDF

- and -mutant tumors are often dependent on MAPK signaling for proliferation and survival and thus sensitive to MAPK pathway inhibitors. However, clinical studies have shown that MEK inhibitors are not uniformly effective in these cancers indicating that mutational status of these oncogenes does not accurately capture MAPK pathway activity. A number of transcripts are regulated by this pathway and are recurrently identified in genome-based MAPK transcriptional signatures.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition is implicated in metastasis, where carcinoma cells lose sessile epithelial traits and acquire mesenchymal migratory potential. The mesenchymal state is also associated with cancer stem cells and resistance to chemotherapy. It might therefore be therapeutically beneficial to promote epithelial identity in cancer.

View Article and Find Full Text PDF

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation.

View Article and Find Full Text PDF

A predominant number of cancers are driven by mutations of key growth signaling genes. While it might be expected that the same alterations within a given oncogene would be identified in all tissues, there are clear cases of tissue specificity. Here, we highlight the tissue specificity of BRAF and EGFR alterations and implications for therapeutic targeting.

View Article and Find Full Text PDF

Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8-14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1.

View Article and Find Full Text PDF

Cancer cell line profiling to identify previously unrecognized kinase dependencies revealed a novel nonmutational dependency on the DNA damage response checkpoint kinase Chk1. Although Chk1 is a promising therapeutic target in p53-deficient cancers, we found that Ras-MEK signaling engages Chk1 in a subset of osteosarcoma, ovarian, and breast cancer cells to enable their survival upon DNA damage, irrespective of p53 mutation status. Mechanistically, Ras-MEK signaling drives Chk1 expression and promotes cancer cell growth that produces genotoxic stress that requires Chk1 to mediate a response to the consequent DNA damage.

View Article and Find Full Text PDF

The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain.

View Article and Find Full Text PDF

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials.

View Article and Find Full Text PDF

Cell line misidentification, contamination and poor annotation affect scientific reproducibility. Here we outline simple measures to detect or avoid cross-contamination, present a framework for cell line annotation linked to short tandem repeat and single nucleotide polymorphism profiles, and provide a catalogue of synonymous cell lines. This resource will enable our community to eradicate the use of misidentified lines and generate credible cell-based data.

View Article and Find Full Text PDF

Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines.

View Article and Find Full Text PDF

Lymph-node metastasis (LNM) predict high recurrence rates in breast cancer patients. Systemic treatment aims to eliminate (micro)metastatic cells. However decisions regarding systemic treatment depend largely on clinical and molecular characteristics of primary tumours.

View Article and Find Full Text PDF

Gastric cancer is the second leading cause of worldwide cancer mortality, yet the underlying genomic alterations remain poorly understood. Here we perform exome and transcriptome sequencing and SNP array assays to characterize 51 primary gastric tumours and 32 cell lines. Meta-analysis of exome data and previously published data sets reveals 24 significantly mutated genes in microsatellite stable (MSS) tumours and 16 in microsatellite instable (MSI) tumours.

View Article and Find Full Text PDF

Unlabelled: Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein.

View Article and Find Full Text PDF

Cancer develops through a multistep process in which normal cells progress to malignant tumors via the evolution of their genomes as a result of the acquisition of mutations in cancer driver genes. The number, identity and mode of action of cancer driver genes, and how they contribute to tumor evolution is largely unknown. This study deployed the Mouse Mammary Tumor Virus (MMTV) as an insertional mutagen to find both the driver genes and the networks in which they function.

View Article and Find Full Text PDF

Germ-line mutations in PALB2 lead to a familial predisposition to breast and pancreatic cancer or to Fanconi Anemia subtype N. PALB2 performs its tumor suppressor role, at least in part, by supporting homologous recombination-type double strand break repair (HR-DSBR) through physical interactions with BRCA1, BRCA2, and RAD51. To further understand the mechanisms underlying PALB2-mediated DNA repair and tumor suppression functions, we targeted Palb2 in the mouse.

View Article and Find Full Text PDF

Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous breast cancer metastasis, which recapitulates key events in its formation and clinical course. Specifically, using the conditional K14cre;Cdh1(F/F);Trp53(F/F) model of de novo mammary tumor formation, we orthotopically transplanted invasive lobular carcinoma (mILC) fragments into mammary glands of wild-type syngeneic hosts.

View Article and Find Full Text PDF

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples.

View Article and Find Full Text PDF