Publications by authors named "Christen H"

In this paper the effects of the addition of a paraffin phase change material on the strength and printability of 3D printed concrete are studied. Phase change materials are latent heat storing materials, which garner and release large amounts of energy as they change phase. The addition of phase change materials to concrete produces a composite material with maximised latent and sensible heat storage capacity.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a therapeutic procedure that can be applied in a palliative setting in patients with treatment-refractory epilepsy who are not suitable for epilepsy surgery. The mechanism of action of VNS is currently not completely understood but appears to depend on a modification of neurotransmitter metabolism. Data of 25 patients with treatment-refractory epilepsy who underwent implantation of a vagus nerve stimulator were retrospectively analyzed in a monocentric study.

View Article and Find Full Text PDF

An overt pro-inflammatory immune response is a key factor contributing to lethal pneumococcal infection in an influenza pre-infected host and represents a potential target for therapeutic intervention. However, there is a paucity of knowledge about the level of contribution of individual cytokines. Based on the predictions of our previous mathematical modeling approach, the potential benefit of IFN-γ- and/or IL-6-specific antibody-mediated cytokine neutralization was explored in C57BL/6 mice infected with the influenza A/PR/8/34 strain, which were subsequently infected with the strain TIGR4 on day 7 post influenza.

View Article and Find Full Text PDF

Background: Interleukin-6 is a pleiotropic cytokine with high clinical relevance and an important mediator of cellular communication, orchestrating both pro- and anti-inflammatory processes. Interleukin-6-induced signalling is initiated by binding of IL-6 to the IL-6 receptor α and subsequent binding to the signal transducing receptor subunit gp130. This active receptor complex initiates signalling through the Janus kinase/signal transducer and activator of transcription pathway.

View Article and Find Full Text PDF

Background: Glycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification.

View Article and Find Full Text PDF

Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm).

View Article and Find Full Text PDF

The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed.

View Article and Find Full Text PDF

Background: Although poliomyelitis has almost been eradicated worldwide, cases of a polio-like disease with asymmetrical flaccid paralysis of variable severity have been seen repeatedly in recent years.

Methods: Data were collected on children treated in hospitals in the German federal states of Bavaria and Lower Saxony in 2016. The frequency of disease across Germany was estimated on the basis of voluntary reporting to the Robert Koch Institute.

View Article and Find Full Text PDF

Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems.

View Article and Find Full Text PDF

The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching.

View Article and Find Full Text PDF

Chromatin remodeling is a complex process shaping the nucleosome landscape, thereby regulating the accessibility of transcription factors to regulatory regions of target genes and ultimately managing gene expression. The SWI/SNF (switch/sucrose nonfermentable) complex remodels the nucleosome landscape in an ATP-dependent manner and is divided into the two major subclasses Brahma-associated factor (BAF) and Polybromo Brahma-associated factor (PBAF) complex. Somatic mutations in subunits of the SWI/SNF complex have been associated with different cancers, while germline mutations have been associated with autism spectrum disorder and the neurodevelopmental disorders Coffin-Siris (CSS) and Nicolaides-Baraitser syndromes (NCBRS).

View Article and Find Full Text PDF

We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO_{3}. We show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down.

View Article and Find Full Text PDF

Background: Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of α-aminoadipic semialdehyde/pyrroline 6' carboxylate and pipecolic acid.

View Article and Find Full Text PDF

We report a giant, ∼22%, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2  kV/cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh/BaTiO_{3} heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh.

View Article and Find Full Text PDF

The realization of a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate.

View Article and Find Full Text PDF

Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation.

View Article and Find Full Text PDF

High-quality epitaxial growth of inter-metallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

View Article and Find Full Text PDF

Background And Methods: We conducted a focus group analysis with students and surgeons on factors which influence medical school students' education in the operating room (OR). The interviews were analyzed using grounded theory.

Results: The analysis resulted in 18 detailed and easily applyable themes, which were grouped into the four categories: "Students' preparation and organizational aspects", "Learning objectives", "Educational strategies for the teacher", and "Social-environmental aspects".

View Article and Find Full Text PDF

Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g.

View Article and Find Full Text PDF

Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO thin films, which comprises a tetragonal-like (') and an intermediate ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments.

View Article and Find Full Text PDF

In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films.

View Article and Find Full Text PDF

With shrinking device sizes, controlling domain formation in nanoferroelectrics becomes crucial. Periodic nanodomains that self-organize into so-called 'superdomains' have been recently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we show that in extended, strain-engineered thin films, superdomains with purely in-plane polarization form to mimic the single-domain ground state, a new insight that allows a priori design of these hierarchical domain architectures.

View Article and Find Full Text PDF

Aim: Head thrusts are well documented in Joubert syndrome and ocular motor apraxia. We provide a detailed clinical characterization of head titubation in 13 young children with Joubert syndrome.

Method: Detailed characterization of head titubation was assessed by targeted clinical evaluation and/or analysis of videos.

View Article and Find Full Text PDF