is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In , the - resistance gene, which confers resistance to . is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs).
View Article and Find Full Text PDFSex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits.
View Article and Find Full Text PDFMale and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene <i>CRABS CLAW (CRC)</i>. We show that the master regulator of sex determination in cucurbits, the transcription factor <i>WIP1</i> whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the <i>CRC</i> promoter to suppress its expression through histone deacetylation.
View Article and Find Full Text PDFShapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape.
View Article and Find Full Text PDFIn plants, introgression of genetic resistance is a proven strategy for developing new resistant lines. While host proteins involved in genome replication and cell to cell movement are widely studied, other cell mechanisms responsible for virus infection remain under investigated. Endosomal sorting complexes required for transport (ESCRT) play a key role in membrane trafficking in plants and are involved in the replication of several plant RNA viruses.
View Article and Find Full Text PDFdisplays a large diversity of horticultural groups with cantaloupe melon the most cultivated type. Using a combination of single-molecule sequencing, 10X Genomics link-reads, high-density optical and genetic maps, and chromosome conformation capture (Hi-C), we assembled a chromosome scale var. Charentais mono genome.
View Article and Find Full Text PDFIn monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression.
View Article and Find Full Text PDFThree amino acid loop extension homeodomain transcription factors (TALE HD TFs) act as life cycle regulators in green algae and land plants. In mosses these regulators are required for the deployment of the sporophyte developmental program. We demonstrate that mutations in either of two TALE HD TF genes, or , in the brown alga result in conversion of the sporophyte generation into a gametophyte.
View Article and Find Full Text PDFStrigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes.
View Article and Find Full Text PDFIn the melon exotic accession PI 161375, the gene cmv1, confers recessive resistance to Cucumber mosaic virus (CMV) strains of subgroup II. cmv1 prevents the systemic infection by restricting the virus to the bundle sheath cells and impeding viral loading to the phloem. Here we report the fine mapping and cloning of cmv1.
View Article and Find Full Text PDFFruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.
View Article and Find Full Text PDFUnderstanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers.
View Article and Find Full Text PDFFruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening.
View Article and Find Full Text PDFUnderstanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy).
View Article and Find Full Text PDFBackground: Ordered collections of mutants serve as invaluable tools in biological research. TILLING (Targeting Induced Local Lesions IN Genomes) provides an efficient method to discover, in mutagenized populations, the possible phenotypes controlled by gene sequences whose function is unknown. This method can replace transgenic techniques for the functional validation of cloned genes, especially in the case of transformation-recalcitrant plants such as cucumber.
View Article and Find Full Text PDFAlthough the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations.
View Article and Find Full Text PDFBackground: Cucumber (Cucumis sativus) belongs to the Cucurbitaceae family that includes more than 800 species. The cucumber genome has been recently sequenced and annotated. Transcriptomics and genome sequencing of many plant genomes are providing information on candidate genes potentially related to agronomically important traits.
View Article and Find Full Text PDFThe new model plant for temperate grasses, Brachypodium distachyon offers great potential as a tool for functional genomics. We have established a sodium azide-induced mutant collection and a TILLING platform, called "BRACHYTIL", for the inbred line Bd21-3. The TILLING collection consists of DNA isolated from 5530 different families.
View Article and Find Full Text PDFBackground: The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group.
View Article and Find Full Text PDFBackground: Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.
View Article and Find Full Text PDFSex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. This mechanism results in the enhancement of outcrossing and promotes genetic variability, the consequences of which are advantageous to the evolution of a species. In melon, sexual forms are controlled by identity of the alleles at the andromonoecious (a) and gynoecious (g) loci.
View Article and Find Full Text PDFAndromonoecy is a widespread sexual system in angiosperms, characterized by plants carrying both male and bisexual flowers. Monoecy is characterized by the presence of both male and female flowers on the same plant. In cucumber, these sexual forms are controlled by the identity of the alleles at the M locus.
View Article and Find Full Text PDFBackground: Acidity is an essential component of the organoleptic quality of fleshy fruits. However, in these fruits, the physiological and molecular mechanisms that control fruit acidity remain unclear. In peach the D locus controls fruit acidity; low-acidity is determined by the dominant allele.
View Article and Find Full Text PDF