Phenological models for insect pests often rely on knowledge of thermal reaction norms. These may differ in shape depending on developmental thermal conditions (e.g.
View Article and Find Full Text PDFBackground: Varroa destructor is a parasite of honeybees. It causes biological damage leading to the colony collapse in the absence of treatment. In recent years, acaricide resistance has emerged in Varroa mites, leading to a decrease in treatment efficacy.
View Article and Find Full Text PDFTemperature strongly drives physiological and ecological processes in ectotherms. While many species rely on behavioural thermoregulation to avoid thermal extremes, others build structures (nests) that confer a shelter against climate variability and extremes. However, the microclimate inside nests remains unknown for most insects.
View Article and Find Full Text PDFVarroa destructor is one of the greatest threats for the European honeybee, Apis mellifera. Acaricides are required to control mite infestation. Three conventional chemical acaricide substances are used in France: tau-fluvalinate, flumethrin and amitraz.
View Article and Find Full Text PDFAnalytical modeling of predator-prey systems has shown that specialist natural enemies can slow, stop and even reverse pest invasions, assuming that the prey population displays a strong Allee effect in its growth. We aimed to formalize the conditions in which spatial biological control can be achieved by generalists, through an analytical approach based on reaction-diffusion equations. Using comparison principles, we obtain sufficient conditions for control and for invasion, based on scalar bistable partial differential equations.
View Article and Find Full Text PDFMost tropical ectotherms live near their physiological limits for temperature. Substantial ecological effects of global change are predicted in the tropics despite the low amplitude of temperature change. These predictions assume that tropical ectotherms experience air temperature as measured by weather stations or predicted by global circulation models.
View Article and Find Full Text PDFWe model the conditions for pest eradication in a reaction-diffusion system made of a prey and a generalist predator through spatial impulsive control within a bounded domain. The motivating example is the control of the invasive horse chestnut leafminer moth through the yearly destruction of leaves in autumn, in which both the pest and its parasitoids overwinter. The model is made of two integro-partial differential equations, the integral portion describing the within-year immigration from the whole domain.
View Article and Find Full Text PDF