Publications by authors named "Christelle Saint-Marc"

Purines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues.

View Article and Find Full Text PDF

The pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time.

View Article and Find Full Text PDF

Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied.

View Article and Find Full Text PDF

The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis.

View Article and Find Full Text PDF

Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms.

View Article and Find Full Text PDF

Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized , reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans.

View Article and Find Full Text PDF

5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified.

View Article and Find Full Text PDF

AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1.

View Article and Find Full Text PDF

Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway.

View Article and Find Full Text PDF

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation.

View Article and Find Full Text PDF

Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5'-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2.

View Article and Find Full Text PDF

5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants.

View Article and Find Full Text PDF

5-Amino-4-imidazolecarboxamide ribonucleotide 5'-phosphate (AICAR) is a monophosphate metabolic intermediate of the de novo purine synthesis pathway that has highly promising metabolic and antiproliferative properties. Yeast mutants unable to metabolize AICAR are auxotroph for histidine. A screening for suppressors of this phenotype identified recessive and dominant mutants that result in lowering the intracellular AICAR concentration.

View Article and Find Full Text PDF

Coordinating homeostasis of multiple metabolites is a major task for living organisms, and complex interconversion pathways contribute to achieving the proper balance of metabolites. AMP deaminase (AMPD) is such an interconversion enzyme that allows IMP synthesis from AMP. In this article, we show that, under specific conditions, lack of AMPD activity impairs growth.

View Article and Find Full Text PDF

Purine salvage is a complex pathway allowing a correct balance between adenylic and guanylic derivatives. In this paper, we show that GUD1 (YDL238c) encodes guanine deaminase, a catabolic enzyme producing xanthine and ammonia from guanine. Importantly, Gud1p activity was higher during post-diauxic growth, suggesting that a decrease of the guanylic nucleotide pool could be required when cells shift from proliferation to quiescence.

View Article and Find Full Text PDF

Background: The purine salvage enzyme inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase catalyzes degradation of IMP to inosine. Although this enzymatic activity has been purified and characterized in Saccharomyces cerevisiae, the gene encoding IMP 5'-nucleotidase had not been identified.

Results: Mass spectrometry analysis of several peptides of this enzyme purified from yeast allowed identification of the corresponding gene as YOR155c, an open reading frame of unknown function, renamed ISN1.

View Article and Find Full Text PDF

The immunosuppressive drug mycophenolic acid (MPA) is a potent and specific inhibitor of IMP dehydrogenase, the first committed step of GMP synthesis. A screen for yeast genes affecting MPA sensitivity, when overexpressed, allowed us to identify two genes, IMD2 and TPO1, encoding a homologue of IMP dehydrogenase and a vacuolar pump, respectively. In parallel, 4787 yeast strains, each carrying an identified knock-out mutation, were tested for growth in the presence of MPA, allowing identification of 100 new genes affecting MPA resistance when disrupted.

View Article and Find Full Text PDF