Publications by authors named "Christelle Marminon"

The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol HP was added to the drug-sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination.

View Article and Find Full Text PDF

Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy.

View Article and Find Full Text PDF

A new series of sulfamoyloxyoxazolidinone (SOO) derivatives have been synthesized and characterized by single-crystal X-ray diffraction, NMR, IR, MS and EA. Chemical reactivity and geometrical characteristics of the target compounds were investigated using DFT method. The possible binding mode between SOO and Main protease (Mpro) of SARS-CoV-2 and their reactivity were studied using molecular docking simulation.

View Article and Find Full Text PDF

Protein kinase CK2 is involved in regulating cellular processes, such as cell cycle, proliferation, migration, and apoptosis, making it an attractive anticancer target. We previously described a prenyloxy-substituted indeno[1,2-]indole (5-isopropyl-4-(3-methylbut-2-enyloxy)-5,6,7,8-tetrahydroindeno[1,2-]indole-9,10-dione ()) as a very potent inhibitor of CK2 holoenzyme (IC = 25 nM). Here, we report the broad-spectrum anticancer activity of and provide substantial progress on its pharmacokinetic properties.

View Article and Find Full Text PDF

The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent.

View Article and Find Full Text PDF

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,β-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised.

View Article and Find Full Text PDF

Ninhydrins show extensive application in organic chemistry and agriculture whereas they have been poorly investigated as bioactive molecules for medicinal chemistry purposes. A series of ninhydrin derivatives was here investigated for the inhibition of human carbonic anhydrases (CAs, EC 4.2.

View Article and Find Full Text PDF

Casein kinase II (CK2) is an intensively studied enzyme, involved in different diseases, cancer in particular. Different scaffolds were used to develop inhibitors of this enzyme. Here, we report on the synthesis and biological evaluation of twenty phenolic, ketonic, and -quinonic indeno[1,2-]indole derivatives as CK2 inhibitors.

View Article and Find Full Text PDF

CK2α and CK2α' are the two isoforms of the catalytic subunit of human protein kinase CK2, an important target for cancer therapy. They have similar, albeit not identical functional and structural properties, and were occasionally reported to be inhibited with distinct efficacies by certain ATP-competitive ligands. Here, we present THN27, an indeno[1,2-]indole derivative, as a further inhibitor with basal isoform selectivity.

View Article and Find Full Text PDF

Several new sulfamidocarbonyloxyphosphonates were prepared in two steps, namely carbamoylation and sulfamoylation, by using chlorosulfonyl isocyanate (CSI), α-hydroxyphosphonates, and various amino derivatives and related (primary or secondary amines, β-amino esters, and oxazolidin-2-ones). All structures were confirmed by ¹H, C, and P NMR spectroscopy, IR spectroscopy, and mass spectroscopy, as well as elemental analysis. Eight compounds were evaluated for their antibacterial activity against four reference bacteria including Gram-positive (ATCC 25923), and Gram-negative (ATCC 25922), (ATCC 700603), (ATCC 27853), in addition to three clinical strains of each studied bacterial species.

View Article and Find Full Text PDF

Oxidative stress may be the major cause of induction of Shiga toxin-converting (Stx) prophages from chromosomes of Shiga toxin-producing Escherichia coli (STEC) in human intestine. Thus, we aimed to test a series of novel antioxidant compounds for their activities against prophage induction, thus, preventing pathogenicity of STEC. Forty-six compounds (derivatives of carbazole, indazole, triazole, quinolone, ninhydrine, and indenoindole) were tested.

View Article and Find Full Text PDF

Since the approval of imatinib in 2001, kinase inhibitors have revolutionized cancer therapies. Inside this family of phosphotransferases, casein kinase 2 (CK2) is of great interest and numerous scaffolds have been investigated to design CK2 inhibitors. Recently, functionalized indeno[1,2-]indoles have been revealed to have high potency against human cancer cell lines such as MCF-7 breast carcinoma and A-427 lung carcinoma.

View Article and Find Full Text PDF

Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance.

View Article and Find Full Text PDF

Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones.

View Article and Find Full Text PDF

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity.

View Article and Find Full Text PDF

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition.

View Article and Find Full Text PDF

Casein Kinase 2 (CK2) is a ubiquitous kinase protein currently targeted for the treatment of some cancers. Recently, the series of indeno[1,2-b]indoles has revealed great interest as potent and selective CK(2) ATP-competitive inhibitors. Among them, 1-amino-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (CM1) was selected for an encapsulation study in order to improve its biodisponibility.

View Article and Find Full Text PDF

The syntheses of new N-polysubstituted imidazo[4,5-b]pyridine-7-one (IP, 5 and 8a-8f) and indazole-4,7-dione (ID, 9 and 10) derivatives are described. The binding affinity of IP and ID towards the recombinant Nucleotide Binding Domain NBD1 of Cryptosporidium parvum CpABC3 was evaluated by intrinsic fluorescence quenching. IP induced a moderate quenching of the intrinsic fluorescence of H6-NBD1 whereas IDs 9 and 10 showed a binding affinity comparable to the ATP analogue TNP-ATP.

View Article and Find Full Text PDF

Rebeccamycin is an indolocarbazole class inhibitor of topoisomerase I. In the course of structure-activity relationship studies on rebeccamycin derivatives, we have synthesized analogs with the sugar moiety attached to either one or both indole nitrogens. Some analogs, especially those with substitutions at the 6' position of the carbohydrate moiety, exhibit potent inhibitory activity toward checkpoint kinase 1 (Chk1), a kinase that has a major role in the G(2)/M checkpoint in response to DNA damage.

View Article and Find Full Text PDF

In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated.

View Article and Find Full Text PDF

In the course of a medicinal chemistry program aimed at discovering novel tumour-active rebeccamycin derivatives targeting DNA and/or topoisomerase I, a series of analogues with the sugar residue linked to the two indole nitrogens was recently developed. Two promising drug candidates in this staurosporine-rebeccamycin hybrid series were selected for a DNA-binding study reported here. The DNA interaction of the cationic indolocarbazole glycosides MP059 bearing a N,N-diethylaminoethyl side chain and MP072 containing a sugar bearing an amino group was compared with that of the uncharged analogue MP024.

View Article and Find Full Text PDF

Rebeccamycin analogues containing one azaindole unit, with and without a methyl group on the imide nitrogen and with the sugar moiety coupled either to the indole nitrogen or to the azaindole nitrogen were synthesized. To increase the solubility and induce stronger interactions with the target macromolecules, a bromo or nitro substitutent was introduced on the indole unit. The DNA binding and topoisomerase I inhibition properties were investigated together with the antiproliferative activities toward nine tumor cell lines.

View Article and Find Full Text PDF

As a part of structure-activity relationship studies on rebeccamycin analogues, compounds containing two aza-indole moieties were synthesized bearing either a methyl group or a hydrogen atom on the imide nitrogen. The azaindole substructures were expected to enhance the cytotoxicity toward tumor cell lines through stronger hydrogen bonding with the target enzyme(s). The cytotoxicities of compounds 8, 10 and 19 against a panel of tumor cell lines were examined and compared with those of rebeccamycin, dechlorinated rebeccamycin 2 and N-methylated analogue A.

View Article and Find Full Text PDF

In the course of structure-activity relationships on rebeccamycin analogues, two dimers of dechlorinated rebeccamycin were synthesised with the aim to improve the interaction with DNA and in vitro antiproliferative activities. The synthesis of two dimeric compounds obtained by joining two molecules of dechlorinated rebeccamycin via the imide nitrogen is described. Melting temperature and DNase I footprinting studies were performed to investigate their interaction with DNA.

View Article and Find Full Text PDF

The synthesis of new rebeccamycin derivatives, in which the carbohydrate moiety is attached to both indole nitrogens, is described. The newly synthesized compounds were tested for their abilities to block the cell cycle of murine leukemia L1210 cells and their in vitro antiproliferative activities against four tumor cell lines (murine L1210 leukemia and human HT29 colon carcinoma, A549 non-small-cell lung carcinoma, K-562 leukemia). Their biological activities are compared with those of the parent compound rebeccamycin.

View Article and Find Full Text PDF