Publications by authors named "Christelle Guegan"

The subventricular zone (SVZ) is a major reservoir for stem cells in the adult mammalian brain. Neural stem cells supply the olfactory bulb with new interneurons and provide cells that migrate towards lesioned brain areas. Neuropeptide Y (NPY), one of the most abundant neuropeptides in the brain, was previously shown to induce neuroproliferation on mice SVZ cells.

View Article and Find Full Text PDF

The purpose of the present study was to investigate the potential cardioprotective effects of an original approach based on the properties of the X chromosome-linked Inhibitor of Apoptosis (XIAP), the most effective endogenous inhibitor of apoptosis. For this purpose, the C-terminal part of XIAP (BIR3 and RING domains) was fused to the protein transduction domain (PTD) of the HIV1 transactivator of transcription, which confers to fused protein the ability to cross cell membranes. This protein, so-called PTD-BIR3/RING, was administered intravenously in C57BL/6J mice subjected to 30 min coronary artery occlusion and 24 h of reperfusion.

View Article and Find Full Text PDF

Mutation in superoxide dismutase-1 (SOD1), which is a cause of ALS, alters the folding patterns of this protein. Accumulation of misfolded mutant SOD1 might activate endoplasmic reticulum (ER) stress pathways. Here we show that transgenic mice expressing ALS-linked SOD1 mutants exhibit molecular alterations indicative of a recruitment of ER's signaling machinery.

View Article and Find Full Text PDF

Dysfunction of mitochondrial complex I is a feature of human neurodegenerative diseases such as Leber hereditary optic neuropathy and Parkinson's disease. This mitochondrial defect is associated with a recruitment of the mitochondrial-dependent apoptotic pathway in vivo. However, in isolated brain mitochondria, complex I dysfunction caused by either pharmacological or genetic means fails to directly activate this cell death pathway.

View Article and Find Full Text PDF

Caspases play a major role in the infarction process that follows occlusion of cerebral arteries and are important targets for stroke therapy. We have generated three fusion proteins that link various domains of the X chromosome-linked inhibitor of apoptosis (XIAP), a potent caspase inhibitor, to the protein transduction domain (PTD) of HIV-1/Tat, and have tested their efficacy after distal occlusion of the middle cerebral artery (dMCAO) in mice. PTD-XIAP failed to accumulate in brain structures after intravenous (iv) delivery, but properly transduced cortical cells when applied topically.

View Article and Find Full Text PDF

A number of studies have validated the importance of caspase activation in ischemia-induced brain damage. Caspases participate in both the initiation and execution phases of apoptosis, and play a central role in neuronal death after global cerebral ischemia. In focal ischemia, apoptosis occurs in the penumbra during the secondary phase of expansion of the lesion.

View Article and Find Full Text PDF

Stroke is one of the leading causes of death and severe disability in most industrialized countries. Despite the extensive research efforts of both academic and industrial laboratories during the last few decades, no changes have been brought about by the design of neuroprotective therapies. The progressive decrease of stroke-induced death and disability is entirely attributable to improvements in the identification and reduction of risk factors.

View Article and Find Full Text PDF

Transgenic expression of mutant superoxide dismutase-1 (SOD1) produces an animal model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We have previously shown that the mitochondrial-dependent programmed cell death (PCD) pathway, including the redistribution of Bax, the cytosolic release of cytochrome c, and the activation of caspase-9, is recruited during neurodegeneration in spinal cords of transgenic mutant SOD1 mice. Herein, we show that the pro-PCD protein Bid is highly expressed in spinal cords of both wild-type and transgenic mutant SOD1 mice.

View Article and Find Full Text PDF

Caspase-8 is the prototypic initiator of the death domain receptor pathway of apoptosis. Here, we report that caspase-8 not only triggers and amplifies the apoptotic process at cytoplasmic sites but can also act as an executioner at nuclear levels. In a murine model of acute ischemia, caspase-8 is relocated into the nucleus of apoptotic neurons, where it cleaves PARP-2, a member of the poly(ADP-ribose) polymerase family involved in DNA repair.

View Article and Find Full Text PDF

The generally accepted concept that astrocytes are highly resistant to hypoxic/ischemic conditions has been challenged by an increasing amount of data. Considering the differences in functional implications of protoplasmic versus fibrous astrocytes, the authors have investigated the possibility that those discrepancies come from specific behaviors of the two cell types. The reactivity and fate of protoplasmic and fibrous astrocytes were observed after permanent occlusion of the medial cerebral artery in mice.

View Article and Find Full Text PDF