Publications by authors named "Christelle El Achkar"

Article Synopsis
  • The study focused on KCTD7-related progressive myoclonic epilepsy (PME), a rare genetic disorder, and aimed to provide detailed clinical and genetic insights from a large international group of patients.
  • It included 42 patients from 36 families, finding that myoclonic seizures often began by 14 months of age, with various EEG and MRI findings, and a significant portion showed delayed development and progressive regression.
  • The research also highlighted previous cases and found that out of 21 patients with genetic testing, some had known mutations while others had novel variants, underscoring the variety in clinical manifestations and severity of the disorder.
View Article and Find Full Text PDF

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively.

View Article and Find Full Text PDF

Purpose: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families.

Methods: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations.

View Article and Find Full Text PDF

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts.

View Article and Find Full Text PDF
Article Synopsis
  • * A majority of participants exhibit neurodevelopmental issues (95%) and seizures (89%), with common seizure types and early onset, underscoring the severity of STXBP1-related conditions.
  • * Despite identifying frequent genetic variants, no specific associations were found between these variants and particular clinical syndromes, indicating a high level of variability in the clinical presentation of STXBP1-related disorders.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role of high-impact genetic variants in over a thousand genes linked to Mendelian neurodevelopmental disorders (NDD) by characterizing 28 probands with de novo heterozygous coding variants.
  • Among the identified variants, 15 unique changes were found, including missense, in-frame deletions, and a splice variant, affecting the Argonaute 1 protein involved in gene-silencing pathways, which suggests these mutations may disrupt mRNA processing.
  • The affected individuals exhibited a range of symptoms, such as intellectual disabilities, speech and motor delays, and autistic behaviors, highlighting the potential significance of these genetic variants in understanding NDD.
View Article and Find Full Text PDF

Objective: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum.

Methods: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy.

View Article and Find Full Text PDF

Objective: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABA ) receptor subunit β2.

Methods: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system.

View Article and Find Full Text PDF
Article Synopsis
  • - The study assessed the effectiveness of analyzing whole exome sequencing (WES) data in pediatric epilepsy patients who had unexplained genetic causes despite previous clinical testing.
  • - Out of 125 participants, 40% were found to have pathogenic genetic variants, with specific genes identified that weren't previously linked to epilepsy.
  • - The findings suggest that early use of WES and its reanalysis can provide crucial insights for patients with epilepsy, especially those with developmental issues, enhancing diagnosis and understanding of associated genetic factors.
View Article and Find Full Text PDF

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α-subunit of the voltage-gated Ca2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission.

View Article and Find Full Text PDF

Objective: To characterize the features associated with PCDH19-related epilepsy, also known as "female-limited epilepsy."

Methods: We analyzed data from participants enrolled in the PCDH19 Registry, focusing on the seizure-related, developmental, neurobehavioral, and sleep-related features. We evaluated variants for pathogenicity based on previous reports, population databases, and in silico predictions, and included individuals with pathogenic or potentially pathogenic variants.

View Article and Find Full Text PDF

Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth.

View Article and Find Full Text PDF

pathogenic variants have been described in benign familial infantile epilepsy, episodic ataxia, paroxysmal kinesigenic dyskinesia, and hemiplegic migraines. We describe a patient with compound heterozygous variants, infantile epilepsy with status epilepticus, paroxysmal dyskinesia and episodic ataxia. Testing revealed a pathogenic duplication (c.

View Article and Find Full Text PDF

TUBB2A is a gene that has recently been reported in association with structural brain abnormalities. Only 3 cases have been reported to date with disparate brain morphologic abnormalities, although all patients have presented with developmental delay and infantile-onset epilepsy. We report a fourth patient with a de novo variant in TUBB2A that is predicted to be pathogenic, presenting with developmental delay, spastic diplegia, exaggerated startle, and anterior temporal pachygyria in the absence of epilepsy.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Nav) are critical regulators of neuronal excitability. Genes for the α-subunits of three sodium channel subtypes-SCN1A, SCN2A, and SCN3A-are all located on chromosome 2q24. A full-term boy with an unremarkable birth history presented at 1 month of age with unusual movements that had started on day of life 2.

View Article and Find Full Text PDF

While genetic causes of epilepsy have been hypothesized from the time of Hippocrates, the advent of new genetic technologies has played a tremendous role in elucidating a growing number of specific genetic causes for the epilepsies. This progress has contributed vastly to our recognition of the epilepsies as a diverse group of disorders, the genetic mechanisms of which are heterogeneous. Genotype-phenotype correlation, however, is not always clear.

View Article and Find Full Text PDF

The association between autism spectrum disorder (ASD) and epilepsy has been described for decades, and yet we still lack the full understanding of this relationship both clinically and at the pathophysiologic level. This review evaluates the available data in the literature pertaining to the clinical characteristics of patients with autism spectrum disorder who develop epilepsy and, conversely, patients with epilepsy who develop autism spectrum disorder. Many studies demonstrate an increased risk of epilepsy in individuals with ASD, but rates vary widely.

View Article and Find Full Text PDF

Objective: Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS.

Methods: Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized.

View Article and Find Full Text PDF