Publications by authors named "Christelle Demarquay"

Anastomotic leak occurrence is a severe complication after colorectal surgery. Considering the difficulty of treating these leaks and their impact on patient care, there is a strong need for an efficient prevention strategy. We evaluated a combination of extracellular vesicles (EVs) from rat adipose-derived stromal cells with a thermoresponsive gel, Pluronic® F127 (PF-127) to prevent anastomotic leaks.

View Article and Find Full Text PDF

Background: Cellular therapy seems to be an innovative therapeutic alternative for which mesenchymal stem cells (MSCs) have been shown to be effective for interstitial and hemorrhagic cystitis. However, the action of MSCs on chronic radiation cystitis (CRC) remains to be demonstrated. The aim of this study was to set up a rat model of CRC and to evaluate the efficacy of MSCs and their mode of action.

View Article and Find Full Text PDF

Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation.

View Article and Find Full Text PDF

Osteoradionecrosis (ORN) is one of the most feared side effects of radiotherapy following cancers of the upper aero-digestive tract and leading to severe functional defects in patients. Today, our lack of knowledge about the physiopathology restricts the development of new treatments. In this study, we refined the ORN rat model and quantitatively studied the progression of the disease.

View Article and Find Full Text PDF

Background: The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties.

View Article and Find Full Text PDF

Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments.

View Article and Find Full Text PDF

Every year, millions of people around the world benefit from radiation therapy to treat cancers localized in the pelvic area. Damage to healthy tissue in the radiation field can cause undesirable toxic effects leading to gastrointestinal complications called pelvic radiation disease. A change in the composition and/or function of the microbiota could contribute to radiation-induced gastrointestinal toxicity.

View Article and Find Full Text PDF

Clinical expression of gastrointestinal radiation toxicity on non-cancerous tissue could be very life threatening and clinicians must deal increasingly with the management of late side effects of radiotherapy. Cell therapy, in particular mesenchymal stromal cell (MSC) therapy, has shown promising results in numerous preclinical animal studies and thus has emerged as a new hope for patient refractory to current treatments. However, many stem cell clinical trials do not confer any beneficial effect suggesting a real need to accelerate research towards the successful clinical application of stem cell therapy.

View Article and Find Full Text PDF

Cancer patients treated with radiotherapy (RT) could develop severe late side effects that affect their quality of life. Long-term bowel complications after RT are mainly characterized by a transmural fibrosis that could lead to intestinal obstruction. Today, surgical resection is the only effective treatment.

View Article and Find Full Text PDF

Healthy tissues surrounding abdomino-pelvic tumours can be impaired by radiotherapy, leading to chronic gastrointestinal complications with substantial mortality. Adipose-derived Mesenchymal Stromal Cells (Ad-MSCs) represent a promising strategy to reduce intestinal lesions. However, systemic administration of Ad-MSCs results in low cell engraftment within the injured tissue.

View Article and Find Full Text PDF

Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine.

View Article and Find Full Text PDF

Objectives: To develop an animal model of mandibular osteoradionecrosis (ORN) using a high-energy radiation source (as used in human therapeutics) and to assess the role of tooth extraction on ORN development.

Materials And Methods (study Design): Ten animals were irradiated with a single 35- or 50-Gy dose. Three weeks later, the second left mandibular molar was extracted from three animals in each group.

View Article and Find Full Text PDF

Radiation proctitis is an insidious disease associated with substantial morbidity and mortality. It may develop following the treatment of several cancers by radiotherapy when normal colorectal tissues are present in the irradiation field. There is no unified approach for the assessment and treatment of this disease, partly due to insufficient knowledge about the mechanism involved in the development of radiation proctitis.

View Article and Find Full Text PDF

Each year, millions of people worldwide are treated for primary or recurrent pelvic malignancies, involving radiotherapy in almost 50% of cases. Delayed development of visceral complications after radiotherapy is recognized in cancer survivors. Therapeutic doses of radiation may lead to the damage of healthy tissue around the tumor and abdominal pain.

View Article and Find Full Text PDF

Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action.

View Article and Find Full Text PDF

The aim of this work was to characterize multipotent mesenchymal stromal cells (MSCs) in the postnatal human thymus and to localize these MSCs in the organ. Adherent cells isolated from thymus samples were characterized by cell-surface antigen expression. This showed that adherent cells have a MSC profile as assessed by the expression of CD73 and CD105 markers and the lack of CD45 expression.

View Article and Find Full Text PDF

Purpose: To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production.

Material And Methods: Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate.

View Article and Find Full Text PDF

This study aimed to correlate blood Flt3-ligand (FL) concentration with CD34(+) cell number in blood and bone marrow (BM) during granulocyte colony-stimulating factor (G-CSF) mobilization. Nonhuman primates were injected with 10 microg/kg of G-CSF (Lenograstim) daily over a period of 5 days. Daily blood sampling and repeated BM sampling showed that FL concentration before mobilization was negatively correlated to the absolute number of BM CD34(+) cells, but also to the number of G-CSF-mobilized CD34(+) cells on days 3-5 of treatment.

View Article and Find Full Text PDF

We evaluated the possibility of using plasma Flt3 ligand (FL) concentration as a biological indicator of bone marrow function after heterogeneous irradiation. Mice were irradiated with 4, 7.5 or 11 Gy with 25, 50, 75 or 100% of the bone marrow in the field of irradiation.

View Article and Find Full Text PDF

Purpose: To compare the efficacy of autologous cell therapy after irradiation combined with granulocyte-colony stimulating factor (G-CSF) injections with G-CSF treatment alone in a heterogeneous model of irradiation representative of an accidental situation.

Material And Methods: Non-human primates were irradiated at 8.7 Gy whole-body dose with the right arm shielded to receive 4.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a model using nonhuman primates to explore the potential of autologous hematopoietic cell therapy for people affected by radiation accidents.
  • The study involved exposing animals to different levels of radiation while shielding parts of their bodies, then harvesting bone marrow cells for therapy.
  • Results indicated that cells extracted after exposure could expand and help recover irradiated animals, although higher radiation doses led to severe health issues, highlighting the model's relevance for studying treatment options for radiation victims.
View Article and Find Full Text PDF

Circulating T lymphocytes were proposed as the main producer of Flt3 ligand. However, during aplasia, there is a drastic reduction in the number of T lymphocytes, while plasma Flt3 ligand concentration is increased. This contradiction prompted us to compare variations in plasma Flt3 ligand during radiation-induced aplasia in BALB/c mice and in T-lymphocyte-deficient NOD-SCID mice to delineate the role of T lymphocytes in the increase in Flt3 ligand concentration.

View Article and Find Full Text PDF

The Stro-1 antigen potentially defines a mesenchymal stem cell (MSC) progenitor subset. We here report on the role of human ex vivo-expanded selected Stro-1(+) or Stro-1(-) MSC subsets on the engraftment of human CD34(+) cord blood cells in the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse model. The data show that cotransplantation of expanded Stro-1(-) cells with CD34(+) cells resulted in a significant increase of human CD45, CD34, CD19, and CD11b cells detected in blood or in bone marrow (BM) and spleen as compared with the infusion of CD34(+) cells alone.

View Article and Find Full Text PDF

Background: Recent studies have suggested that ex vivo expansion of autologous hematopoietic cells could be a therapy of choice for the treatment of bone marrow failure. We investigated the potential of a combined infusion of autologous ex vivo expanded hematopoietic cells with mesenchymal (MSCs) for the treatment of multi-organ failure syndrome following irradiation in a non-human primate model.

Methods: Hematopoietic cells and MSCs were expanded from bone marrow aspirates.

View Article and Find Full Text PDF

To assess the therapeutic efficacy of ex vivo-expanded hematopoietic cells in the treatment of radiation-induced pancytopenia, we have set up a non-human primate model. Two ex vivo expansion protocols for bone marrow mononuclear cells (BMMNC) were studied. The first consisted of a 7-day culture in the presence of stem cell factor (SCF), Flt3-ligand, thrombopoietin (TPO), interleukin-3 (IL-3), and IL-6, which induced preferentially the expansion of immature hematopoietic cells [3.

View Article and Find Full Text PDF