Publications by authors named "Christelle Cardona"

Objective: Reactivation of HIV-1 expression in persistent reservoirs together with an efficient HAART has been proposed as an adjuvant therapy aimed at reaching a functional cure for HIV. Previously, H3K9 methylation was shown to play a major role in chromatin-mediated repression of the HIV-1 promoter. Here, we evaluated the therapeutic potential of histone methyltransferase inhibitors (HMTIs) in reactivating HIV-1 from latency.

View Article and Find Full Text PDF

New quinolonyl diketo acid compounds bearing various substituents at position 6 of the quinolone scaffold were designed and synthesized as potential HIV-1 integrase inhibitors. These new compounds were evaluated for their antiviral and anti-integrase activity and showed inhibitory potency similar to that of 6-bromide analog 2. Molecular modeling and docking studies were performed to rationalize these data and to provide a detailed understanding of the mechanism of inhibition for this class of compounds.

View Article and Find Full Text PDF

Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells.

View Article and Find Full Text PDF

Ethyl [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl]-4-hydroxy-2-oxo-3-butenoate 1 and [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid 2 were synthesized as potential HIV-1 integrase inhibitors and evaluated for their enzymatic and antiviral activity, acidic compound 2 being more potent than ester compound 1. X-ray diffraction analyses and theoretical calculations show that the diketoacid chain of compound 2 is preferentially coplanar with the quinolinone ring (dihedral angle of 0-30 degrees ). Docking studies suggest binding modes in agreement with structure-activity relationships.

View Article and Find Full Text PDF