Publications by authors named "Christelle Brimont"

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride-on-silicon platform with gallium nitride (GaN) as the main waveguide layer. The photonic circuits consist of a microdisk and a pulley waveguide, terminated by out-coupling gratings. In this Letter, we measure quality factors up to 3500 under continuous-wave excitation.

View Article and Find Full Text PDF

On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties.

View Article and Find Full Text PDF

Dipolar excitons offer a rich playground for both design of novel optoelectronic devices and fundamental many-body physics. Wide GaN/(AlGa)N quantum wells host a new and promising realization of dipolar excitons. We demonstrate the in-plane confinement and cooling of these excitons, when trapped in the electrostatic potential created by semitransparent electrodes of various shapes deposited on the sample surface.

View Article and Find Full Text PDF

We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases.

View Article and Find Full Text PDF