Publications by authors named "Christele Robert-Granie"

The development of an across-country genomic evaluation scheme is a promising alternative for enlarging reference populations and successfully implementing genomic selection in small ruminant populations. However, the feasibility of such evaluations depends on the genetic similarity among the populations, and therefore, high connectedness and high genetic correlations between the traits recorded in different countries or populations are needed. In this study, we evaluated the feasibility of performing an across-country genomic evaluation for milk production and type traits in Alpine and Saanen goats from Canada, France, Italy, and Switzerland.

View Article and Find Full Text PDF

Genomic prediction of breeding values is routinely performed in several livestock breeding programs around the world, but the size of the training populations and the genetic structure of populations evaluated have, in many instances, limited the increase in the accuracy of genomic estimated breeding values. Combining phenotypic, pedigree, and genomic data from genetically related populations can be a feasible strategy to overcome this limitation. However, the success of across-population genetic evaluations depends on the pedigree connectedness and genetic relationship among individuals from different populations.

View Article and Find Full Text PDF

The enhanced availability of sequence data in livestock provides an opportunity for more accurate predictions in routine genomic evaluations. Such evaluations would therefore no longer rely only on the linkage disequilibrium between a chip marker and the causal mutation. The objective of this study was to assess the usefulness of sequence data in Saanen goats (n = 33) to better capture a quantitative trait locus (QTL) on chromosome 19 (CHI19) and improve the accuracy of predictions for 3 milk production traits, 5 type traits, and somatic cell scores.

View Article and Find Full Text PDF

The development of statistical methods aiming to improve the accuracy of genomic predictions is of utmost value for dairy goat breeding programs. In this context, the use of haplotypes, instead of individual SNP, could improve the accuracy of genomic predictions by better capturing the effect of causal variants, instead of relying solely on linkage disequilibrium with individual SNP. Haplotypes can be included in genomic evaluation models in various ways, such as fitting them as pseudo-SNP (i.

View Article and Find Full Text PDF

Background: Goats were domesticated 10,500 years ago to supply humans with useful resources. Since then, specialized breeds that are adapted to their local environment have been developed and display specific genetic profiles. The VarGoats project is a 1000 genomes resequencing program designed to cover the genetic diversity of the Capra genus.

View Article and Find Full Text PDF

Background: Random regression models (RRM) are widely used to analyze longitudinal data in genetic evaluation systems because they can better account for time-course changes in environmental effects and additive genetic values of animals by fitting the test-day (TD) specific effects. Our objective was to implement a random regression model for the evaluation of dairy production traits in French goats.

Results: The data consisted of milk TD records from 30,186 and 32,256 first lactations of Saanen and Alpine goats.

View Article and Find Full Text PDF

Background: In 2017, genomic selection was implemented in French dairy goats using the single-step genomic best linear unbiased prediction (ssGBLUP) method, which assumes that all single nucleotide polymorphisms explain the same fraction of genetic variance. However, ssGBLUP is not suitable for protein content, which is controlled by a major gene, i.e.

View Article and Find Full Text PDF

Background: The parasitic nematode Haemonchus contortus shows highly variable life history traits. This highlights the need to have an average estimate and a quantification of the variation around it to calibrate epidemiological models.

Methods: This paper aimed to quantify the main life history traits of H.

View Article and Find Full Text PDF

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia.

View Article and Find Full Text PDF

Background: Genomic best linear unbiased prediction methods assume that all markers explain the same fraction of the genetic variance and do not account effectively for genes with major effects such as the α s1 casein polymorphism in dairy goats. In this study, we investigated methods to include the available α s1 casein genotype effect in genomic evaluations of French dairy goats.

Methods: First, the α s1 casein genotype was included as a fixed effect in genomic evaluation models based only on bucks that were genotyped at the α s1 casein locus.

View Article and Find Full Text PDF

This study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits.

View Article and Find Full Text PDF

Background: Haemonchosis is a parasitic disease that causes severe economic losses in sheep industry. In recent years, the increasing resistance of the parasite to anthelmintics has raised the need for alternative control strategies. Genetic selection is a promising alternative but its efficacy depends on the availability of genetic variation and on the occurrence of favourable genetic correlations between the traits included in the breeding goal.

View Article and Find Full Text PDF

Background: All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average.

View Article and Find Full Text PDF

Mastitis caused by Escherichia coli and Staphylococcus aureus is a major pathology of dairy cows. To better understand the differential response of the mammary gland to these two pathogens, we stimulated bovine mammary epithelial cells (bMEC) with either E. coli crude lipopolysaccharide (LPS) or with S.

View Article and Find Full Text PDF

For genomic selection methods, the statistical challenge is to estimate the effect of each of the available single-nucleotide polymorphism (SNP). In a context where the number of SNPs (p) is much higher than the number of bulls (n), this task may lead to a poor estimation of these SNP effects if, as for genomic BLUP (gBLUP), all SNPs have a non-null effect. An alternative is to use approaches that have been developed specifically to solve the 'p >> n' problem.

View Article and Find Full Text PDF

Background: Staphylococcus aureus is a major pathogen of humans and animals and emerging antibiotic-resistant strains have further increased the concern of this health issue. Host genetics influence susceptibility to S. aureus infections, and the genes determining the outcome of infections should be identified to find alternative therapies to treatment with antibiotics.

View Article and Find Full Text PDF

Background: The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S.

View Article and Find Full Text PDF

Empirical experience with genomic selection in dairy cattle suggests that the distribution of the effects of single nucleotide polymorphisms (SNPs) might be far from normality for some traits. An alternative, avoiding the use of arbitrary prior information, is the Bayesian Lasso (BL). Regular BL uses a common variance parameter for residual and SNP effects (BL1Var).

View Article and Find Full Text PDF

Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as 'patterning' the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification.

View Article and Find Full Text PDF

Although susceptibility to scrapie is largely controlled by the PrP gene, the role of other genes that affect scrapie resistance in sheep is now confirmed. Following the detection of quantitative trait loci (QTL) on chromosomes 6 and 18 in a half-sib family with an ARQ/VRQ susceptible PrP genotype, the whole pedigree of a naturally infected flock was investigated to confirm these QTL regions in different PrP genotypes. The present study has allowed us to confirm the QTL on chromosome 18, and to demonstrate the QTL effects in several PrP genotypes.

View Article and Find Full Text PDF

Background: The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria.

View Article and Find Full Text PDF

Background: The aim of this work was to study the performances of 2 predictive statistical tools on a data set that was given to all participants of the Eadgene-SABRE Post Analyses Working Group, namely the Pig data set of Hazard et al. (2008). The data consisted of 3686 gene expressions measured on 24 animals partitioned in 2 genotypes and 2 treatments.

View Article and Find Full Text PDF

Background: As presented in the introduction paper, three sets of differentially regulated genes were found after the analysis of the chicken infection data set from EADGENE. Different methods were used to interpret these results.

Results: GOTM, Pathway Studio and Ingenuity softwares were used to investigate the three lists of genes.

View Article and Find Full Text PDF

Background: In the context of systems biology, few sparse approaches have been proposed so far to integrate several data sets. It is however an important and fundamental issue that will be widely encountered in post genomic studies, when simultaneously analyzing transcriptomics, proteomics and metabolomics data using different platforms, so as to understand the mutual interactions between the different data sets. In this high dimensional setting, variable selection is crucial to give interpretable results.

View Article and Find Full Text PDF

Recent biotechnology advances allow for multiple types of omics data, such as transcriptomic, proteomic or metabolomic data sets to be integrated. The problem of feature selection has been addressed several times in the context of classification, but needs to be handled in a specific manner when integrating data. In this study, we focus on the integration of two-block data that are measured on the same samples.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: