Publications by authors named "Christel Koopman"

CO electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO electrolysis.

View Article and Find Full Text PDF

Electrocatalytic CO reduction processes are generally coupled with the oxidation of water. Process economics can greatly improve by replacing the water oxidation with a more valuable oxidation reaction, a process called paired electrolysis. Here we report the feasibility of pairing CO reduction with the oxidation of glycerol on Ni S /NF anodes to produce formate at both anode and cathode.

View Article and Find Full Text PDF

Electrochemical CO reduction has the potential to use excess renewable electricity to produce hydrocarbon chemicals and fuels. Gas diffusion electrodes (GDEs) allow overcoming the limitations of CO mass transfer but are sensitive to flooding from (hydrostatic) pressure differences, which inhibits upscaling. We investigate the effect of the flooding behavior on the CO reduction performance.

View Article and Find Full Text PDF

Electrochemical CO reduction is a promising process to store intermittent renewable energy in the form of chemical bonds and to meet the demand for hydrocarbon chemicals without relying on fossil fuels. Researchers in the field have used gas diffusion electrodes (GDEs) to supply CO to the catalyst layer from the gas phase. This approach allows us to bypass mass transfer limitations imposed by the limited solubility and diffusion of CO in the liquid phase at a laboratory scale.

View Article and Find Full Text PDF

Electronic doping of semiconductor nanomaterials can be efficiently achieved using electrochemistry. However, the injected charge carriers are usually not very stable. After disconnecting the cell that is used for electrochemical doping, the carrier density drops, typically in several minutes.

View Article and Find Full Text PDF

Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to be stabilized to avoid unintentional relaxation back to the intrinsic state. Here, we investigate methods to increase the stability of electrochemically injected charges in thin films of a wide variety of semiconductor materials, namely inorganic semiconductors (ZnO NCs, CdSe NCs, and CdSe/CdS core/shell NCs) and organic semiconductors (P3DT, PCBM, and C).

View Article and Find Full Text PDF