Publications by authors named "Christel Dias"

Growth hormone (GH) binds to its specific receptor (GHR) at the surface of target cells activating multiple signaling pathways implicated in growth and metabolism. Dysregulation of GHRs leads to pathophysiological states that most commonly affect stature. We previously showed the association of a polymorphic (n = 15-37) GT microsatellite in the human GHR gene promoter with short stature in a sex-specific manner.

View Article and Find Full Text PDF

GH plays an essential role in the growing child by binding to the growth hormone receptor (GHR) on target cells and regulating multiple growth promoting and metabolic effects. Mutations in the GHR gene coding regions result in GH insensitivity (dwarfism) due to a dysfunctional receptor protein. However, children with idiopathic short stature (ISS) show growth impairment without GH or GHR defects.

View Article and Find Full Text PDF

Background: Breast cancer is the second most frequent type of cancer affecting women. We are increasingly aware that changes in mRNA splicing are associated with various characteristics of cancer. The most deadly aspect of cancer is metastasis, the process by which cancer spreads from the primary tumor to distant organs.

View Article and Find Full Text PDF

Background: Alternative splicing is known to increase the complexity of mammalian transcriptomes since nearly all mammalian genes express multiple pre-mRNA isoforms. However, our knowledge of the extent and function of alternative splicing in early embryonic development is based mainly on a few isolated examples. High throughput technologies now allow us to study genome-wide alternative splicing during mouse development.

View Article and Find Full Text PDF

Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre-mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons.

View Article and Find Full Text PDF

Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type-specific genes within biologically and functionally relevant pathways unique to each tissue type.

View Article and Find Full Text PDF

We have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternative splice site use, intron retention), differential 5' UTR (initiation of transcription) use, and differential 3' UTR (alternative polyadenylation) use.

View Article and Find Full Text PDF

Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals.

View Article and Find Full Text PDF

Gene silencing is an essential tool in gene discovery and gene therapy. Traditionally, viral delivery of antisense RNA and, more recently, small interfering RNA (siRNA) molecules in the form of small hairpin RNAs (shRNA) has been used as a strategy to achieve gene silencing. Nevertheless, the enduring challenge is to identify molecules that specifically and optimally silence a given target gene.

View Article and Find Full Text PDF