Globally spreading bacterial strains belong to clonal types that have the capacity to colonize, spread and cause disease in the community. Recent comparative genomic analyses of well-defined clinical isolates have led to the identification of bacterial properties that are required for the successful spread of bacterial clones. In this Review, we discuss the evolution of bacterial clones, the importance of recombination versus mutations for evolution of clones, common methods used to study clonal relationships among bacteria, factors that may contribute to the clonal spread of bacteria and the potential relevance of bacterial clones to clinical disease.
View Article and Find Full Text PDFBackground: Streptococcus pneumoniae is a genetically diverse major human pathogen, yet a common colonizer of the nasopharynx. Here we analyzed the influence of defects affecting in vitro growth rate, on the ability of S. pneumoniae to colonize and to cause invasive disease in vivo.
View Article and Find Full Text PDFRelatedness between isolates of Streptococcus pneumoniae can be determined from sequences of multiple genes belonging to the core genome (multilocus sequence typing [MLST]), but these do not provide information on gene content that may affect the potential of isolates to cause invasive pneumococcal disease. Gene content data, obtained using microarrays, were gathered for 40 clinical isolates of 12 serotypes belonging to 30 multilocus sequence types. We found that sequence variations in housekeeping genes assessed by MLST correlated well with whole-genome microarray analyses identifying the presence/absence of accessory genes/regions.
View Article and Find Full Text PDF