Introduction: Metabolic flexibility (MetF), defined as the ability to switch between fat and glucose oxidation, is increasingly recognised as a critical marker for assessing responses to dietary interventions. Previously, we showed that the consumption of multifibre bread improved insulin sensitivity and reduced low-density lipoprotein cholesterol (LDLc) levels in overweight and obese individuals. As a secondary objective, we aimed to explore whether our intervention could also improve MetF.
View Article and Find Full Text PDFBacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius, re-identified as Bacillus paralicheniformis and Bacillus licheniformis, using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs).
View Article and Find Full Text PDFSome cardiometabolic risk factors such as dyslipidemia and insulin resistance are known to be associated with low gut microbiota richness. A link between gut microbiota richness and the diversity of consumed dietary fibers (DF) has also been reported. We introduced a larger diversity of consumed DF by using a daily consumed bread in subjects at cardiometabolic risk and assessed the impacts on the composition and functions of gut microbiota as well as on cardiometabolic profile.
View Article and Find Full Text PDFUnlabelled: Thermophilic bacteria, especially from the genus , constitute a huge potential source of novel enzymes that could be relevant for biotechnological applications. In this work, we described the cellulose and hemicellulose-related enzymatic activities of the hot spring CCMM B940 from the Moroccan Coordinated Collections of Microorganisms (CCMM), and revealed its potential for hemicellulosic biomass utilization. Indeed, B940 was able to degrade complex polysaccharides such as xylan and lichenan and exhibited activity towards carboxymethylcellulose.
View Article and Find Full Text PDFOwing to the growing recognition of the gut microbiota as a main partner of human health, we are expecting that the number of indications for fecal microbiota transplantation (FMT) will increase. Thus, there is an urgent need for standardization of the entire process of fecal transplant production. This study provides a complete standardized procedure to prepare and store live and ready-to-use transplants that meet the standard requirements of good practices to applied use in pharmaceutical industry.
View Article and Find Full Text PDFThe digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum.
View Article and Find Full Text PDFA xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified.
View Article and Find Full Text PDFAn improved RNA isolation method based on the acid guanidinium-phenol-chloroform (AGPC) procedure using saline precipitation but no column purification was evaluated for quantifying microbial gene expression using reverse transcription quantitative PCR (RT-qPCR) in rumen contents. The method provided good RNA integrity and quantity extracts. The transcript levels of eight glycoside hydrolase (GH) genes of the major rumen fibrolytic bacterium Fibrobacter succinogenes were quantified in the complex microbiota of a conventional sheep and in a gnotobiotic lamb harboring a microflora containing F.
View Article and Find Full Text PDFEndoglucanase and xylanase activities of three rumen protozoa, Polyplastron multivesiculatum, Eudiplodinium maggii, and Entodinium sp. were compared qualitatively by zymograms and quantitatively by measuring specific activities against different polysaccharides. A set of carboxymethylcellulases and xylanases was produced by the large ciliates whereas no band of activity was observed for Entodinium sp.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2004
The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolated strains, and looked for the presence of 10 glycoside hydrolase genes previously identified in S85.
View Article and Find Full Text PDFA new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM.
View Article and Find Full Text PDF