Spo13 is a key meiosis-specific regulator required for centromere cohesion and coorientation, and for progression through two nuclear divisions. We previously reported that it causes a G2/M arrest and may delay the transition from late anaphase to G1, when overexpressed in mitosis. Yet its mechanism of action has remained elusive.
View Article and Find Full Text PDFMuscle atrophy is a major hallmark of amyotrophic lateral sclerosis (ALS), the most frequent adult-onset motor neuron disease. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we used the G86R superoxide dismutase-1 transgenic mouse model of ALS and performed high-density oligonucleotide microarrays. We compared these data to those obtained by axotomy-induced denervation.
View Article and Find Full Text PDFWe report a cross-species expression profiling analysis of the human, mouse, and rat male meiotic transcriptional program, using enriched germ cell populations, whole gonads, and high-density oligonucleotide microarrays (GeneChips). Among 35% of the protein-coding genes present in rodent and human genomes that were found to be differentially expressed between germ cells and somatic controls, a key group of 357 conserved core loci was identified that displays highly similar meiotic and postmeiotic patterns of transcriptional induction across all three species. Genes known to be important for sexual reproduction are significantly enriched among differentially expressed core loci and a smaller group of conserved genes not detected in 17 nontesticular somatic tissues, correlating transcriptional activation and essential function in the male germ line.
View Article and Find Full Text PDFWe report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available.
View Article and Find Full Text PDFDuring the mitotic cell cycle, microtubule depolymerization leads to a cell cycle arrest in metaphase, due to activation of the spindle checkpoint. Here, we show that under microtubule-destabilizing conditions, such as low temperature or the presence of the spindle-depolymerizing drug benomyl, meiotic budding yeast cells arrest in G(1) or G(2), instead of metaphase. Cells arrest in G(1) if microtubule perturbation occurs as they enter the meiotic cell cycle and in G(2) if cells are already undergoing premeiotic S phase.
View Article and Find Full Text PDF