Methyl isocyanate (MIC) is a toxic chemical found in many commercial, industrial, and agricultural processes, and was the primary chemical involved in the Bhopal, India disaster of 1984. The atmospheric environmental chemical reactivity of MIC is relatively unknown with only proposed reaction channels, mainly involving OH-initiated reactions. The gas-phase degradation reaction pathways of MIC and its primary product, formyl isocyanate (FIC), were investigated with quantum mechanical (QM) calculations to assess the fate of the toxic chemical and its primary transformation products.
View Article and Find Full Text PDFDespite significant efforts devoted to understanding the underlying complexity and emergence of collective movement in animal groups, the role of different external settings on this type of movement remains largely unexplored. Here, by combining time series analysis and complex network tools, we present an extensive investigation of the effects of shady environments on the behavior of a fish species (Silver Carp Hypophthalmichthys molitrix) within earthen ponds. We find that shade encourages fish residence during daylight hours, but the degree of preference for shade varies substantially among trials and ponds.
View Article and Find Full Text PDFParathion, a once commonly used pesticide known for its potential toxicity, can follow several degradation mechanisms in the environment. Given the species stability and persistence, parathion can be washed into waterways from rain, and therefore an atomistic perspective of the hydrolysis of parathion, and its byproduct paraoxon, is required in order to understand its fate in the environment. Experimental studies have determined that pH plays an important role in the calculated hydrolysis rate constants of parathion degradation.
View Article and Find Full Text PDFMalathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. Accordingly, there are numerous studies revolving around possible degradation strategies to remove malathion from various environmental media.
View Article and Find Full Text PDFMalathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of more significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. These compounds may threaten human life if they are present in high quantities during operation in contaminated or industrial areas.
View Article and Find Full Text PDFCollective animal behavior arises from individual motivations and social interactions that are critical for individual fitness. Fish have long inspired investigations into collective motion, specifically, their ability to integrate environmental and social information across ecological contexts. This demonstration illustrates techniques used for quantifying behavioral responses of fish, in this case, Golden Shiner (Notemigonus crysoleucas), to visual stimuli using computer visualization and digital image analysis.
View Article and Find Full Text PDFMunition constituents (MC) are present in aquatic environments throughout the world. Potential for fluctuating release with low residence times may cause concentrations of MC to vary widely over time at contaminated sites. Recently, polar organic chemical integrative samplers (POCIS) have been demonstrated to be valuable tools for the environmental exposure assessment of MC in water.
View Article and Find Full Text PDFSubstantial declines of Pacific salmon populations have occurred over the past several decades related to large-scale anthropogenic and climatic changes in freshwater and marine environments. In the Columbia River Basin, migrating juvenile salmonids may pass as many as eight large-scale hydropower projects before reaching the ocean; however, the cumulative effects of multiple dam passages are largely unknown. Using acoustic transmitters and an extensive system of hydrophone arrays in the Lower Columbia River, we calculated the survival of yearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O.
View Article and Find Full Text PDFThe risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish.
View Article and Find Full Text PDFTo monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR) allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model.
View Article and Find Full Text PDFMarine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes.
View Article and Find Full Text PDFAn organism's daily activities are affected by predation and predation risk that have behavioral and physiological costs, which translate into long-term population and community consequences. We tested the hypothesis that the perception of predation risk from sand seatrout, Cynoscion arenarius, affects the behavior, and immediate and intermediate physiological responses of longnose killifish, Fundulus majalis. We further hypothesized that prey responses change if prey are buffered by artificial submerged aquatic vegetation (SAV), a potential refuge from predators.
View Article and Find Full Text PDF